CheeLi03's picture
Upload tokenizer
48a074a verified
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - nl
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base Dutch Punctuation 5k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: nl_nl
          split: None
          args: 'config: nl split: test'
        metrics:
          - type: wer
            value: 54.440154440154444
            name: Wer

Whisper Base Dutch Punctuation 5k - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8128
  • Wer: 54.4402

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0633 5.1546 1000 0.6299 49.1433
0.0055 10.3093 2000 0.7255 43.7379
0.0025 15.4639 3000 0.7736 45.1014
0.0017 20.6186 4000 0.8005 50.4585
0.0014 25.7732 5000 0.8128 54.4402

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.3