CheeLi03's picture
Upload tokenizer
e4e70eb verified
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - pt
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base Portugese Punctuation 5k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: pt_br
          split: None
          args: 'config: pt split: test'
        metrics:
          - type: wer
            value: 34.92197781537883
            name: Wer

Whisper Base Portugese Punctuation 5k - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5540
  • Wer: 34.9220

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0508 5.0251 1000 0.4118 56.8105
0.0041 10.0503 2000 0.4887 45.7558
0.0019 15.0754 3000 0.5250 38.7902
0.0012 20.1005 4000 0.5450 34.5742
0.001 25.1256 5000 0.5540 34.9220

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.3