CheeLi03's picture
Upload tokenizer
79c1582 verified
|
raw
history blame
2.2 kB
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - nl
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base Dutch Punctuation 5k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: th_th
          split: None
          args: 'config: nl split: test'
        metrics:
          - type: wer
            value: 196.69912134884825
            name: Wer

Whisper Base Dutch Punctuation 5k - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6304
  • Wer: 196.6991

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1341 5.2356 1000 0.4705 244.7875
0.0167 10.4712 2000 0.5314 231.2040
0.0025 15.7068 3000 0.5875 214.1297
0.0013 20.9424 4000 0.6187 199.7863
0.001 26.1780 5000 0.6304 196.6991

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.3