whisper-base-zh / README.md
CheeLi03's picture
Upload tokenizer
88bd8bc verified
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - zh
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base Chinese - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: cmn_hans_cn
          split: None
          args: 'config: zh split: test'
        metrics:
          - type: wer
            value: 21.01513260055415
            name: Wer

Whisper Base Chinese - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4109
  • Wer: 21.0151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0705 4.3668 1000 0.3557 23.0095
0.0066 8.7336 2000 0.3853 21.0578
0.0026 13.1004 3000 0.4046 20.9695
0.002 17.4672 4000 0.4109 21.0151

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1