CheeLi03's picture
Upload tokenizer
6338e32 verified
metadata
base_model: openai/whisper-tiny
datasets:
  - fleurs
language:
  - id
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Tiny Indonesian - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: id_id
          split: None
          args: 'config: id split: test'
        metrics:
          - type: wer
            value: 45.41510845175767
            name: Wer

Whisper Tiny Indonesian - Chee Li

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7988
  • Wer: 45.4151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1718 5.4348 1000 0.6667 52.1167
0.0263 10.8696 2000 0.7266 46.9035
0.007 16.3043 3000 0.7828 43.6799
0.0053 21.7391 4000 0.7988 45.4151

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1