CheeLi03's picture
Upload tokenizer
7f3266c verified
metadata
base_model: openai/whisper-tiny
datasets:
  - fleurs
language:
  - ja
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Tiny Japanese - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: ja_jp
          split: None
          args: 'config: ja split: test'
        metrics:
          - type: wer
            value: 347.58418740849197
            name: Wer

Whisper Tiny Japanese - Chee Li

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8285
  • Wer: 347.5842

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.161 6.25 1000 0.6874 1070.8638
0.0196 12.5 2000 0.7621 1201.0249
0.0063 18.75 3000 0.8127 416.8375
0.0046 25.0 4000 0.8285 347.5842

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1