File size: 2,011 Bytes
897d943
5ddc21e
 
 
897d943
 
5ddc21e
897d943
5ddc21e
 
897d943
 
 
 
 
 
 
c4d7a28
5ddc21e
897d943
 
 
 
 
 
 
5ddc21e
c4d7a28
5ddc21e
897d943
 
 
 
 
 
 
 
 
c4d7a28
 
897d943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4d7a28
 
897d943
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: openai/whisper-base
datasets:
- fleurs
language:
- pt
library_name: transformers
license: apache-2.0
metrics:
- wer
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Whisper Base Portugese Punctuation 5k - Chee Li
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Google Fleurs
      type: fleurs
      config: pt_br
      split: None
      args: 'config: pt split: test'
    metrics:
    - type: wer
      value: 32.52491069749953
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Base Portugese Punctuation 5k - Chee Li

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Google Fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8518
- Wer: 32.5249

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.0416        | 5.0251  | 1000 | 0.8330          | 38.7902 |
| 0.0012        | 10.0503 | 2000 | 0.8518          | 32.5249 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.3