CheeLi03's picture
Upload tokenizer
ae44b97 verified
|
raw
history blame
2.2 kB
metadata
base_model: openai/whisper-tiny
datasets:
  - fleurs
language:
  - th
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Tiny Thai Punctuation 5k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: th_th
          split: None
          args: 'config: th split: test'
        metrics:
          - type: wer
            value: 123.48610781287105
            name: Wer

Whisper Tiny Thai Punctuation 5k - Chee Li

This model is a fine-tuned version of openai/whisper-tiny on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7730
  • Wer: 123.4861

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2888 5.2356 1000 0.6095 131.7739
0.0918 10.4712 2000 0.6100 119.5203
0.0229 15.7068 3000 0.6838 122.1325
0.0069 20.9424 4000 0.7521 121.0639
0.0049 26.1780 5000 0.7730 123.4861

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.3