metadata
base_model: openai/whisper-tiny
language:
- tr
library_name: transformers
license: apache-2.0
metrics:
- wer
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Whisper Tiny Turkish Combine 8k - Chee Li
results: []
Whisper Tiny Turkish Combine 8k - Chee Li
This model is a fine-tuned version of openai/whisper-tiny on the Meta JSON Turkish Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.6564
- Wer: 173.7311
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.0132 | 25.6410 | 1000 | 1.3487 | 149.9555 |
0.0215 | 51.2821 | 2000 | 0.5751 | 126.8923 |
0.0026 | 76.9231 | 3000 | 0.6045 | 176.7587 |
0.0011 | 102.5641 | 4000 | 0.6247 | 148.6198 |
0.0006 | 128.2051 | 5000 | 0.6369 | 174.5325 |
0.0004 | 153.8462 | 6000 | 0.6470 | 171.5049 |
0.0003 | 179.4872 | 7000 | 0.6530 | 184.2386 |
0.0003 | 205.1282 | 8000 | 0.6564 | 173.7311 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.1