|
---
|
|
library_name: setfit
|
|
tags:
|
|
- setfit
|
|
- sentence-transformers
|
|
- text-classification
|
|
- generated_from_setfit_trainer
|
|
base_model: sentence-transformers/paraphrase-MiniLM-L6-v2
|
|
metrics:
|
|
- accuracy
|
|
widget:
|
|
- text: Serious Games Einführung in die Thematik Serious Games Grundlagen Anwendungsgebiete
|
|
und Trends Die Einzelthemen umfassen unter anderem Einführung in Serious Games
|
|
Game Development Game Design Game Technology Tools und Engines Personalisierung
|
|
und Adaption Interactive Digital Storytelling Authoring und Content Generation
|
|
Multiplayer Games Game Interfaces und Sensor Technology Effects Affects und User
|
|
Experience Mobile Games Serious Games Anwendungsbereiche und Beispiele Die Übungen
|
|
enthalten Theorie und Praxisanteile Dabei wird die Verwendung einer Game Engine
|
|
gelehrt.
|
|
- text: Aerobotics Seminar Einführung in die Aufgabenstellung die vorhandene Infrastruktur
|
|
und den zu durchlaufenden Entwicklungsprozess Entwurf und Implementierung von
|
|
Algorithmen zur Flugregelung in Gruppenarbeit Diskussion des Fortschritts in regelmäßigen
|
|
Flugdemonstration Abschließende Präsentation und Dokumentation
|
|
- text: "Seminar Intraoperative Imaging and Machine Learning For many applications\
|
|
\ techniques like deep learning allow for considerably faster algorithm development\
|
|
\ and allow to automate tasks that were performed manually in the past In medical\
|
|
\ imaging a large variety of tasks that interfere with clinical workflows has\
|
|
\ the potential for automation However at the same time new challenges arise like\
|
|
\ data privacy regulations and ethics concerns In this seminar we want to develop\
|
|
\ an application that allows for the automation of an based intraoperative planning\
|
|
\ or measurement procedure from a holistic perspective To this end we will invite\
|
|
\ a surgeon to explain the medical background and visit the operating room to\
|
|
\ understand the surgeons\x92 needs while performing the task Having understood\
|
|
\ the underlying medical problem we will look into topics of data privacy code\
|
|
\ of ethics prototype development and UI design for surgeons Furthermore we will\
|
|
\ touch regulatory requirements necessary for releasing software to clinics At\
|
|
\ the end of the seminar the students will have developed and documented a prototypical\
|
|
\ application for the indented intraoperative use case Students will be able to\
|
|
\ visit an operation room following the rules of such an environment perform their\
|
|
\ own literature research on a given subject independently research this subject\
|
|
\ according to data privacy and ethical standard present and introduce the subject\
|
|
\ to their student peers give a scientific talk in English according to international\
|
|
\ conference standards describe their results in a scientific report"
|
|
- text: Plattformen und Systeme für eLearning Platforms and Systems for eLearning
|
|
Mit dieser Vorlesung wird eine Übersicht über technische Systeme und Plattformen
|
|
im Bereich des eLearning gegeben insbesondere über Learning Management Systeme
|
|
LMS Prüfungssysteme bis hin zu Campus Management Systemen Neben der Struktur und
|
|
dem Einsatz werden auch Austauschformate sowie Individuallösungen für digitale
|
|
Lernszenarien vorgestellt Neben den reinen funktionalen Softwareanforderung und
|
|
deren Realisierungen werden insbesondere auch die Anforderungen aus Sicht der
|
|
Lehrenden und Studierenden behandelt Die Benutzungsoberflächen der verwendeten
|
|
Systeme müssen dafür eine gute User Experience aufweisen welche durch Methoden
|
|
der messbar werden Diese werden mit dem Fokus auf didaktische Szenarien behandelt
|
|
Grundsätzlich müssen im Lehr Lernkontext personenbezogene Daten benutzt werden
|
|
damit ggf diverse Analysen durchgeführt werden können Diese bilden die Grundlage
|
|
für die Learning Analytics Die Anforderungen des Datenschutzes sind zu berücksichtigen
|
|
Neben einer theoretischen Übersicht werden anhand aktueller Systeme verschiedene
|
|
didaktische Szenarien umgesetzt und nach technischen Kriterien analysiert Innerhalb
|
|
der Übung werden dafür einzelne Beispiele mit einem aktuellen System vorgestellt
|
|
und auf Herausforderungen eingegangen Diese werden mit aktuellen Forschungsergebnissen
|
|
verglichen und kritisch diskutiert In den Übungen sind Hausübungen oder Kleinprojekte
|
|
in Teams zu bearbeiten und in den Übungsgruppen zu präsentieren und die Lösungen
|
|
zu verteidigen.
|
|
- text: Seminar Internet Technology Das Seminar behandelt aktuelle Themen der Systems
|
|
industrielle Kommunikation konfigurierbare Netze Clouds Sicherheit und Privatsphäre
|
|
sowie Modellierung Evaluierung und Verifikation von Kommunikationssystemen und
|
|
protokollen.
|
|
pipeline_tag: text-classification
|
|
inference: false
|
|
---
|
|
|
|
# SetFit with sentence-transformers/paraphrase-MiniLM-L6-v2
|
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
|
|
|
|
The model has been trained using an efficient few-shot learning technique that involves:
|
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
|
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** SetFit
|
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2)
|
|
- **Classification head:** a OneVsRestClassifier instance
|
|
- **Maximum Sequence Length:** 128 tokens
|
|
<!-- - **Number of Classes:** Unknown -->
|
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
|
|
|
## Uses
|
|
|
|
### Direct Use for Inference
|
|
|
|
First install the SetFit library:
|
|
|
|
```bash
|
|
pip install setfit
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
|
|
```python
|
|
from setfit import SetFitModel
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
|
|
# Run inference
|
|
preds = model("Seminar Internet Technology Das Seminar behandelt aktuelle Themen der Systems industrielle Kommunikation konfigurierbare Netze Clouds Sicherheit und Privatsphäre sowie Modellierung Evaluierung und Verifikation von Kommunikationssystemen und protokollen.")
|
|
```
|
|
|
|
<!--
|
|
### Downstream Use
|
|
|
|
*List how someone could finetune this model on their own dataset.*
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Set Metrics
|
|
| Training set | Min | Median | Max |
|
|
|:-------------|:----|:---------|:----|
|
|
| Word count | 3 | 131.6738 | 514 |
|
|
|
|
### Training Hyperparameters
|
|
- batch_size: (16, 16)
|
|
- num_epochs: (1, 1)
|
|
- max_steps: -1
|
|
- sampling_strategy: oversampling
|
|
- num_iterations: 20
|
|
- body_learning_rate: (2e-05, 2e-05)
|
|
- head_learning_rate: 2e-05
|
|
- loss: CosineSimilarityLoss
|
|
- distance_metric: cosine_distance
|
|
- margin: 0.25
|
|
- end_to_end: False
|
|
- use_amp: False
|
|
- warmup_proportion: 0.1
|
|
- l2_weight: 0.01
|
|
- seed: 42
|
|
- eval_max_steps: -1
|
|
- load_best_model_at_end: False
|
|
|
|
### Training Results
|
|
| Epoch | Step | Training Loss | Validation Loss |
|
|
|:------:|:----:|:-------------:|:---------------:|
|
|
| 0.0014 | 1 | 0.3334 | - |
|
|
| 0.0716 | 50 | 0.2411 | - |
|
|
| 0.1433 | 100 | 0.2124 | - |
|
|
| 0.2149 | 150 | 0.186 | - |
|
|
| 0.2865 | 200 | 0.1806 | - |
|
|
| 0.3582 | 250 | 0.1759 | - |
|
|
| 0.4298 | 300 | 0.1705 | - |
|
|
| 0.5014 | 350 | 0.1542 | - |
|
|
| 0.5731 | 400 | 0.1559 | - |
|
|
| 0.6447 | 450 | 0.1524 | - |
|
|
| 0.7163 | 500 | 0.1438 | - |
|
|
| 0.7880 | 550 | 0.1507 | - |
|
|
| 0.8596 | 600 | 0.14 | - |
|
|
| 0.9312 | 650 | 0.1466 | - |
|
|
| 0.0006 | 1 | 0.1157 | - |
|
|
| 0.0287 | 50 | 0.1266 | - |
|
|
| 0.0573 | 100 | 0.1325 | - |
|
|
| 0.0860 | 150 | 0.1237 | - |
|
|
| 0.1147 | 200 | 0.12 | - |
|
|
| 0.1433 | 250 | 0.1189 | - |
|
|
| 0.1720 | 300 | 0.1094 | - |
|
|
| 0.2007 | 350 | 0.1028 | - |
|
|
| 0.2294 | 400 | 0.0993 | - |
|
|
| 0.2580 | 450 | 0.1003 | - |
|
|
| 0.2867 | 500 | 0.0898 | - |
|
|
| 0.3154 | 550 | 0.0875 | - |
|
|
| 0.3440 | 600 | 0.0847 | - |
|
|
| 0.3727 | 650 | 0.0879 | - |
|
|
| 0.4014 | 700 | 0.0801 | - |
|
|
| 0.4300 | 750 | 0.0754 | - |
|
|
| 0.4587 | 800 | 0.0791 | - |
|
|
| 0.4874 | 850 | 0.0715 | - |
|
|
| 0.5161 | 900 | 0.0781 | - |
|
|
| 0.5447 | 950 | 0.0765 | - |
|
|
| 0.5734 | 1000 | 0.0718 | - |
|
|
| 0.6021 | 1050 | 0.0786 | - |
|
|
| 0.6307 | 1100 | 0.073 | - |
|
|
| 0.6594 | 1150 | 0.0705 | - |
|
|
| 0.6881 | 1200 | 0.072 | - |
|
|
| 0.7167 | 1250 | 0.0673 | - |
|
|
| 0.7454 | 1300 | 0.066 | - |
|
|
| 0.7741 | 1350 | 0.0671 | - |
|
|
| 0.8028 | 1400 | 0.0631 | - |
|
|
| 0.8314 | 1450 | 0.0673 | - |
|
|
| 0.8601 | 1500 | 0.0638 | - |
|
|
| 0.8888 | 1550 | 0.0674 | - |
|
|
| 0.9174 | 1600 | 0.0613 | - |
|
|
| 0.9461 | 1650 | 0.063 | - |
|
|
| 0.9748 | 1700 | 0.0682 | - |
|
|
| 0.0014 | 1 | 0.0497 | - |
|
|
| 0.0716 | 50 | 0.0584 | - |
|
|
| 0.1433 | 100 | 0.0663 | - |
|
|
| 0.2149 | 150 | 0.0682 | - |
|
|
| 0.2865 | 200 | 0.0616 | - |
|
|
| 0.3582 | 250 | 0.0657 | - |
|
|
| 0.4298 | 300 | 0.0593 | - |
|
|
| 0.5014 | 350 | 0.0593 | - |
|
|
| 0.5731 | 400 | 0.0565 | - |
|
|
| 0.6447 | 450 | 0.0595 | - |
|
|
| 0.7163 | 500 | 0.0589 | - |
|
|
| 0.7880 | 550 | 0.0649 | - |
|
|
| 0.8596 | 600 | 0.0554 | - |
|
|
| 0.9312 | 650 | 0.0601 | - |
|
|
|
|
### Framework Versions
|
|
- Python: 3.12.3
|
|
- SetFit: 1.1.0
|
|
- Sentence Transformers: 3.0.0
|
|
- Transformers: 4.43.1
|
|
- PyTorch: 2.3.1+cu121
|
|
- Datasets: 2.20.0
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
```bibtex
|
|
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
|
doi = {10.48550/ARXIV.2209.11055},
|
|
url = {https://arxiv.org/abs/2209.11055},
|
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
|
title = {Efficient Few-Shot Learning Without Prompts},
|
|
publisher = {arXiv},
|
|
year = {2022},
|
|
copyright = {Creative Commons Attribution 4.0 International}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |