Chicka-Mixtral-3x7b / README.md
Chickaboo's picture
Update README.md
c1a5f23 verified
---
license: mit
pipeline_tag: text-generation
tags:
- merge
- mergekit
- mistral
- moe
- conversational
- chicka
---
### Model Description
This model is a Mixture of Experts merged LLM consisting of 3 mistral based models:
base model/conversational expert, **openchat/openchat-3.5-0106**
code expert, **beowolx/CodeNinja-1.0-OpenChat-7B**
math expert, **meta-math/MetaMath-Mistral-7B**
This is the Mergekit config used in the merging process:
``` yaml
base_model: openchat/openchat-3.5-0106
experts:
- source_model: openchat/openchat-3.5-0106
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- "I want"
- source_model: beowolx/CodeNinja-1.0-OpenChat-7B
positive_prompts:
- "code"
- "python"
- "javascript"
- "programming"
- "algorithm"
- "C#"
- "C++"
- "debug"
- "runtime"
- "html"
- "command"
- "nodejs"
- source_model: meta-math/MetaMath-Mistral-7B
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
- "calculate"
- "arithmetic"
- "algebra"
```
### Open LLM Leaderboards
| **Benchmark** | **Chicka-Mixtral-3X7B** | **Mistral-7B-Instruct-v0.2** | **Meta-Llama-3-8B** |
|--------------|----------------------|--------------------------|-----------------|
| **Average** | **69.19** | 60.97 | 62.55 |
| **ARC** | **64.08** | 59.98 | 59.47 |
| **Hellaswag** | **83.96** | 83.31 | 82.09 |
| **MMLU** | 64.87 | 64.16 | **66.67** |
| **TruthfulQA** | **50.51** | 42.15 | 43.95 |
| **Winogrande** | **81.06** | 78.37 | 77.35 |
| **GSM8K** | **70.66** | 37.83 | 45.79 |
### Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Chickaboo/Chicka-Mistral-3x7b")
tokenizer = AutoTokenizer.from_pretrained("Chickaboo/Chicka-Mixtral-3x7b")
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```