|
--- |
|
license: mit |
|
pipeline_tag: text-generation |
|
tags: |
|
- merge |
|
- mergekit |
|
- mistral |
|
- moe |
|
- conversational |
|
- chicka |
|
--- |
|
|
|
### Model Description |
|
|
|
This model is a Mixture of Experts merged LLM consisting of 3 mistral based models: |
|
|
|
base model/conversational expert, **openchat/openchat-3.5-0106** |
|
|
|
code expert, **beowolx/CodeNinja-1.0-OpenChat-7B** |
|
|
|
math expert, **meta-math/MetaMath-Mistral-7B** |
|
|
|
This is the Mergekit config used in the merging process: |
|
``` yaml |
|
base_model: openchat/openchat-3.5-0106 |
|
experts: |
|
- source_model: openchat/openchat-3.5-0106 |
|
positive_prompts: |
|
- "chat" |
|
- "assistant" |
|
- "tell me" |
|
- "explain" |
|
- "I want" |
|
- source_model: beowolx/CodeNinja-1.0-OpenChat-7B |
|
positive_prompts: |
|
- "code" |
|
- "python" |
|
- "javascript" |
|
- "programming" |
|
- "algorithm" |
|
- "C#" |
|
- "C++" |
|
- "debug" |
|
- "runtime" |
|
- "html" |
|
- "command" |
|
- "nodejs" |
|
- source_model: meta-math/MetaMath-Mistral-7B |
|
positive_prompts: |
|
- "reason" |
|
- "math" |
|
- "mathematics" |
|
- "solve" |
|
- "count" |
|
- "calculate" |
|
- "arithmetic" |
|
- "algebra" |
|
``` |
|
|
|
### Open LLM Leaderboards |
|
|
|
|
|
| **Benchmark** | **Chicka-Mixtral-3X7B** | **Mistral-7B-Instruct-v0.2** | **Meta-Llama-3-8B** | |
|
|--------------|----------------------|--------------------------|-----------------| |
|
| **Average** | **69.19** | 60.97 | 62.55 | |
|
| **ARC** | **64.08** | 59.98 | 59.47 | |
|
| **Hellaswag** | **83.96** | 83.31 | 82.09 | |
|
| **MMLU** | 64.87 | 64.16 | **66.67** | |
|
| **TruthfulQA** | **50.51** | 42.15 | 43.95 | |
|
| **Winogrande** | **81.06** | 78.37 | 77.35 | |
|
| **GSM8K** | **70.66** | 37.83 | 45.79 | |
|
|
|
### Usage |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained("Chickaboo/Chicka-Mistral-3x7b") |
|
tokenizer = AutoTokenizer.from_pretrained("Chickaboo/Chicka-Mixtral-3x7b") |
|
|
|
messages = [ |
|
{"role": "user", "content": "What is your favourite condiment?"}, |
|
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, |
|
{"role": "user", "content": "Do you have mayonnaise recipes?"} |
|
] |
|
|
|
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
|
|
model_inputs = encodeds.to(device) |
|
model.to(device) |
|
|
|
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |