Model Card for German-Emotions

This is basically the German translation of arpanghoshal/EmoRoBERTa. We used the go_emotions dataset, translated it into German and fine-tuned the FacebookAI/xlm-roberta-base model. So this model allows the classification of 28 emotions in German Transcripts ('admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'). A paper will be published soonish...

Model Details

  • Model type: text-classification
  • Language(s) (NLP): German
  • License: apache-2.0
  • Finetuned from model: FacebookAI/xlm-roberta-base
  • Hyperparameters:
    • Epochs: 10
    • learning_rate: 3e-5
    • weight_decay: 0.01
  • Metrics:
    • accuracy: 0.41
    • f1: 0.45
    • kappa: 0.42

How to Get Started with the Model

Use the code below to get started with the model.

# pip install transformers[torch]
# pip install pandas, transformers, numpy, tqdm, openpyxl
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
import numpy as np
from tqdm import tqdm
import time
import os
from transformers import DataCollatorWithPadding
import json

# create base path and input and output path for the model folder and the file folder
base_path = "/share/users/staff/c/clalk/Emotionen"
model_path = os.path.join(base_path, 'Modell')
file_path = os.path.join(base_path, 'Datensatz')

MODEL = "FacebookAI/xlm-roberta-base"
tokenizer = AutoTokenizer.from_pretrained(MODEL, do_lower_case=False)
model = AutoModelForSequenceClassification.from_pretrained(
    model_path,
    from_tf=False,
    from_flax=False,
    trust_remote_code=False,
    num_labels=28,
    ignore_mismatched_sizes=True
)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

# Path to the file
os.chdir(file_path)
df_full = pd.read_excel("speech_turns_pat.xlsx", index_col=None)

if 'Unnamed: 0' in df_full.columns:
    df_full = df_full.drop(columns=['Unnamed: 0'])

df_full.reset_index(drop=True, inplace=True)

# Tokenization and inference function
def infer_texts(texts):
    tokenized_texts = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
    class SimpleDataset:
        def __init__(self, tokenized_texts):
            self.tokenized_texts = tokenized_texts
        def __len__(self):
            return len(self.tokenized_texts["input_ids"])
        def __getitem__(self, idx):
            return {k: v[idx] for k, v in self.tokenized_texts.items()}
    test_dataset = SimpleDataset(tokenized_texts)
    trainer = Trainer(model=model, data_collator=data_collator)
    predictions = trainer.predict(test_dataset)
    sigmoid = torch.nn.Sigmoid()
    probs = sigmoid(torch.Tensor(predictions.predictions))
    return np.round(np.array(probs), 3).tolist()

start_time = time.time()
df = df_full

# Save results in a dict, here the df contains the additional variables File, Class, session, short_id, long_id, Prediction, hscl-11, and srs.
# However, only the "Sentence" column with the text is relevant for the pipeline. 
results = []
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
    patient_texts = row['Patient']
    prob_list = infer_texts(patient_texts)
    results.append({
        "File": row['Class']+"_"+row['session'],
        "Class": row['Class'],
        "session": row['session'],
        "short_id": row["short_id"],
        "long_id": row["long_id"],
        "Sentence": patient_texts,
        "Prediction": prob_list[0],
        "hscl-11": row["Gesamtscore_hscl"],
        "srs": row["srs_ges"],
    })

# Convert results to df
df_results = pd.DataFrame(results)
df_results.to_json("emo_speech_turn_inference.json")

end_time = time.time()
elapsed_time = end_time - start_time
print(f"Elapsed time: {elapsed_time:.2f} seconds")
print(df_results)

emo_df = pd.DataFrame(df_results['Prediction'].tolist(), index=df_results["Class"].index)
col_names = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral']
emo_df.columns = col_names
print(emo_df)
Downloads last month
65
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ChrisLalk/German-Emotions

Finetuned
(2748)
this model
Quantizations
1 model

Dataset used to train ChrisLalk/German-Emotions