|
```python |
|
from openrlhf.models.model import get_llm_for_sequence_regression |
|
from transformers import AutoTokenizer |
|
from typing import List |
|
import torch |
|
import regex as re |
|
def strip_sequence(text, pad_token, eos_token): |
|
pad_token_escaped = re.escape(pad_token) |
|
eos_token_escaped = re.escape(eos_token) |
|
|
|
pattern = f"^({eos_token_escaped}|{pad_token_escaped})+" |
|
text = re.sub(pattern, "", text) |
|
|
|
pattern = f"({eos_token_escaped}|{pad_token_escaped})+$" |
|
text = re.sub(pattern, "", text) |
|
return text |
|
|
|
class RewardModelProxy: |
|
def __init__( |
|
self, |
|
reward_pretrain:str, |
|
max_len:int, |
|
batch_size:int, |
|
normalize_reward:bool=False, |
|
flash_attn:bool=True, |
|
bf16:bool=True, |
|
load_in_4bit:bool=False, |
|
value_head_prefix:str="score", |
|
disable_fast_tokenizer:bool=False, |
|
): |
|
|
|
self.reward_model = get_llm_for_sequence_regression( |
|
reward_pretrain, |
|
"reward", |
|
normalize_reward=normalize_reward, |
|
use_flash_attention_2=flash_attn, |
|
bf16=bf16, |
|
load_in_4bit=load_in_4bit, |
|
value_head_prefix=value_head_prefix, |
|
device_map="cuda:5", |
|
) |
|
self.reward_model.eval() |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(reward_pretrain, trust_remote_code=True, use_fast=not disable_fast_tokenizer) |
|
self.max_length = max_len |
|
self.batch_size = batch_size |
|
|
|
def get_reward(self, conversations:List[List[dict]]): |
|
if self.batch_size is None: |
|
batch_size = len(conversations) |
|
else: |
|
batch_size = self.batch_size |
|
|
|
queries = [] |
|
for conversation in conversations: |
|
query = self.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=False) |
|
queries.append(query) |
|
|
|
# remove pad_token |
|
for i in range(len(queries)): |
|
queries[i] = ( |
|
strip_sequence(queries[i], self.tokenizer.pad_token, self.tokenizer.eos_token) |
|
+ self.tokenizer.eos_token |
|
) |
|
|
|
scores = [] |
|
# batch |
|
with torch.no_grad(): |
|
for i in range(0, len(queries), batch_size): |
|
inputs = self.tokenize_fn( |
|
queries[i : min(len(queries), i + batch_size)], device=self.reward_model.device |
|
) |
|
r = self.reward_model(inputs["input_ids"], inputs["attention_mask"]) |
|
r = r.tolist() |
|
scores.extend(r) |
|
return scores |
|
|
|
def tokenize_fn(self, texts, device): |
|
batch = self.tokenizer( |
|
texts, |
|
return_tensors="pt", |
|
add_special_tokens=False, |
|
max_length=self.max_length, |
|
padding=True, |
|
truncation=True, |
|
) |
|
return {k: v.to(device) for k, v in batch.items()} |
|
|
|
def __call__(self, conversations:List[List[dict]]): |
|
return self.get_reward(conversations) |
|
|
|
RM = RewardModelProxy( |
|
"CodeDPO/Qwen2.5-Coder-7B_with_margin_scalebt", |
|
max_len=2048, |
|
batch_size=8, |
|
) |
|
conversations = [ |
|
[ |
|
{"role": "system", "content": "Hello, how can I help you today?"}, |
|
{"role": "user", "content": "I want to book a flight."}, |
|
], |
|
] |
|
|
|
scores = RM(conversations) |
|
print(scores) |
|
``` |