File size: 27,075 Bytes
09c1340 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 |
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader, random_split
import pandas as pd
import numpy as np
import json
import os
import re
import urllib.parse
import matplotlib.pyplot as plt
from collections import Counter
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import tqdm
# --- Healthcare URL Detection Components ---
# Healthcare-related keywords for domain detection
HEALTHCARE_KEYWORDS = [
'health', 'medical', 'hospital', 'clinic', 'pharma', 'patient', 'care', 'med',
'doctor', 'physician', 'nurse', 'therapy', 'rehab', 'dental', 'cardio', 'neuro',
'oncology', 'pediatric', 'orthopedic', 'surgery', 'diagnostic', 'wellbeing',
'wellness', 'ehr', 'emr', 'mychart', 'medicare', 'medicaid', 'insurance'
]
# Common healthcare institutions and systems
HEALTHCARE_INSTITUTIONS = [
'mayo', 'cleveland', 'hopkins', 'kaiser', 'mount sinai', 'cedars', 'baylor',
'nhs', 'quest', 'labcorp', 'cvs', 'walgreens', 'aetna', 'cigna', 'unitedhealthcare',
'bluecross', 'anthem', 'humana', 'va.gov', 'cdc', 'who', 'nih'
]
# Healthcare TLDs and specific domains
HEALTHCARE_DOMAINS = ['.health', '.healthcare', '.medicine', '.hospital', '.clinic', 'mychart.']
# --- Feature Extraction Functions ---
def url_length(url):
"""Return the length of the URL."""
return len(url)
def num_dots(url):
"""Return the number of dots in the URL."""
return url.count('.')
def num_hyphens(url):
"""Return the number of hyphens in the URL."""
return url.count('-')
def num_at(url):
"""Return the number of @ symbols in the URL."""
return url.count('@')
def num_tilde(url):
"""Return the number of ~ symbols in the URL."""
return url.count('~')
def num_underscore(url):
"""Return the number of underscores in the URL."""
return url.count('_')
def num_percent(url):
"""Return the number of percent symbols in the URL."""
return url.count('%')
def num_ampersand(url):
"""Return the number of ampersands in the URL."""
return url.count('&')
def num_hash(url):
"""Return the number of hash symbols in the URL."""
return url.count('#')
def has_https(url):
"""Return 1 if the URL uses HTTPS, 0 otherwise."""
return int(url.startswith('https://'))
def has_ip_address(url):
"""Check if the URL contains an IP address instead of a domain name."""
try:
parsed_url = urllib.parse.urlparse(url)
if re.match(r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$', parsed_url.netloc):
return 1
# Check for IPv6
if re.match(r'^\[[0-9a-fA-F:]+\]$', parsed_url.netloc):
return 1
return 0
except:
return 0
def get_hostname_length(url):
"""Return the length of the hostname."""
try:
parsed_url = urllib.parse.urlparse(url)
return len(parsed_url.netloc)
except:
return 0
def get_path_length(url):
"""Return the length of the path."""
try:
parsed_url = urllib.parse.urlparse(url)
return len(parsed_url.path)
except:
return 0
def get_path_level(url):
"""Return the number of directories in the path."""
try:
parsed_url = urllib.parse.urlparse(url)
return parsed_url.path.count('/')
except:
return 0
def get_subdomain_level(url):
"""Return the number of subdomains in the URL."""
try:
parsed_url = urllib.parse.urlparse(url)
hostname = parsed_url.netloc
if has_ip_address(url):
return 0 # IP addresses don't have subdomains
parts = hostname.split('.')
# Remove top-level and second-level domains
if len(parts) > 2:
return len(parts) - 2 # Count remaining parts as subdomain levels
else:
return 0 # No subdomains
except:
return 0
def has_double_slash_in_path(url):
"""Check if the path contains a double slash."""
try:
parsed_url = urllib.parse.urlparse(url)
return int('//' in parsed_url.path)
except:
return 0
def get_tld(url):
"""Extract the top-level domain from a URL."""
try:
parsed_url = urllib.parse.urlparse(url)
hostname = parsed_url.netloc.lower()
parts = hostname.split('.')
if len(parts) > 1:
return parts[-1]
return ''
except:
return ''
def count_digits(url):
"""Count the number of digits in the URL."""
return sum(c.isdigit() for c in url)
def digit_ratio(url):
"""Calculate the ratio of digits to the total URL length."""
if len(url) == 0:
return 0
return count_digits(url) / len(url)
def count_letters(url):
"""Count the number of letters in the URL."""
return sum(c.isalpha() for c in url)
def letter_ratio(url):
"""Calculate the ratio of letters to the total URL length."""
if len(url) == 0:
return 0
return count_letters(url) / len(url)
def count_special_chars(url):
"""Count the number of special characters in the URL."""
return sum(not c.isalnum() and not c.isspace() for c in url)
def special_char_ratio(url):
"""Calculate the ratio of special characters to the total URL length."""
if len(url) == 0:
return 0
return count_special_chars(url) / len(url)
def get_query_length(url):
"""Return the length of the query string."""
try:
parsed_url = urllib.parse.urlparse(url)
return len(parsed_url.query)
except:
return 0
def get_fragment_length(url):
"""Return the length of the fragment."""
try:
parsed_url = urllib.parse.urlparse(url)
return len(parsed_url.fragment)
except:
return 0
def healthcare_relevance_score(url):
"""
Calculate a relevance score for healthcare-related URLs.
Higher scores indicate stronger relation to healthcare.
"""
url_lower = url.lower()
parsed_url = urllib.parse.urlparse(url_lower)
domain = parsed_url.netloc
path = parsed_url.path
score = 0
# Check for healthcare keywords in domain
for keyword in HEALTHCARE_KEYWORDS:
if keyword in domain:
score += 3
elif keyword in path:
score += 1
# Check for healthcare institutions
for institution in HEALTHCARE_INSTITUTIONS:
if institution in domain:
score += 4
elif institution in path:
score += 2
# Check for healthcare-specific domains and TLDs
for healthcare_domain in HEALTHCARE_DOMAINS:
if healthcare_domain in domain:
score += 3
# Check for EHR/patient portal indicators
if 'portal' in domain or 'portal' in path:
score += 2
if 'patient' in domain or 'mychart' in domain:
score += 3
if 'ehr' in domain or 'emr' in domain:
score += 3
# Normalize score to be between 0 and 1
return min(score / 10.0, 1.0)
def extract_features(url):
"""Extract all features from a given URL."""
features = [
# Core features (the original 17)
num_dots(url),
get_subdomain_level(url),
get_path_level(url),
url_length(url),
num_hyphens(url),
num_at(url),
num_tilde(url),
num_underscore(url),
num_percent(url),
num_ampersand(url),
num_hash(url),
has_https(url),
has_ip_address(url),
get_hostname_length(url),
get_path_length(url),
has_double_slash_in_path(url),
# Additional features
digit_ratio(url),
letter_ratio(url),
special_char_ratio(url),
get_query_length(url),
get_fragment_length(url),
healthcare_relevance_score(url)
]
return features
def get_feature_names():
"""Get names of all features in the order they are extracted."""
return [
'num_dots', 'subdomain_level', 'path_level', 'url_length',
'num_hyphens', 'num_at', 'num_tilde', 'num_underscore',
'num_percent', 'num_ampersand', 'num_hash', 'has_https',
'has_ip_address', 'hostname_length', 'path_length',
'double_slash_in_path', 'digit_ratio', 'letter_ratio',
'special_char_ratio', 'query_length', 'fragment_length',
'healthcare_relevance'
]
# --- Dataset Loading and Processing ---
class URLDataset(Dataset):
def __init__(self, features, labels):
"""
Custom PyTorch Dataset for URL features and labels.
Args:
features (numpy.ndarray): Feature vectors for each URL
labels (numpy.ndarray): Labels for each URL (0 for benign, 1 for malicious)
"""
self.features = torch.tensor(features, dtype=torch.float32)
self.labels = torch.tensor(labels, dtype=torch.long)
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
return self.features[idx], self.labels[idx]
def load_huggingface_data(file_path):
"""
Load the Hugging Face dataset from a JSON file.
Args:
file_path: Path to the JSON file
Returns:
List of tuples containing (url, label)
"""
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
url_data = []
for item in data:
url = item.get('text', '')
label = item.get('label', -1)
if url and label != -1: # Only add entries with valid URLs and labels
url_data.append((url, label))
print(f"Loaded {len(url_data)} URLs from Hugging Face dataset")
return url_data
def load_phiusiil_data(file_path):
"""
Load the PhiUSIIL dataset from a CSV file.
Args:
file_path: Path to the CSV file
Returns:
List of tuples containing (url, label)
"""
df = pd.read_csv(file_path)
url_data = []
for _, row in df.iterrows():
url = row['URL']
label = row['label']
if isinstance(url, str) and url.strip() and not pd.isna(label):
url_data.append((url, label))
print(f"Loaded {len(url_data)} URLs from PhiUSIIL dataset")
return url_data
def load_kaggle_data(file_path):
"""
Load the Kaggle malicious_phish.csv dataset.
Args:
file_path: Path to the CSV file
Returns:
List of tuples containing (url, label)
"""
df = pd.read_csv(file_path)
url_data = []
for _, row in df.iterrows():
url = row['url']
type_val = row['type']
# Convert to binary classification (0 for benign, 1 for all others)
label = 0 if type_val.lower() == 'benign' else 1
if isinstance(url, str) and url.strip():
url_data.append((url, label))
print(f"Loaded {len(url_data)} URLs from Kaggle dataset")
return url_data
def combine_and_deduplicate(datasets):
"""
Combine multiple datasets and remove duplicates by URL.
Args:
datasets: List of datasets, each containing (url, label) tuples
Returns:
Tuple of (urls, labels) with duplicates removed
"""
url_to_label = {}
# Process each dataset
for dataset in datasets:
for url, label in dataset:
# If we've seen this URL before with a different label,
# prefer the malicious label (1) for safety
if url in url_to_label:
url_to_label[url] = max(url_to_label[url], label)
else:
url_to_label[url] = label
# Convert to lists
urls = list(url_to_label.keys())
labels = list(url_to_label.values())
print(f"After deduplication: {len(urls)} unique URLs")
# Report class distribution
label_counts = Counter(labels)
print(f"Class distribution - Benign (0): {label_counts[0]}, Malicious (1): {label_counts[1]}")
return urls, labels
def extract_all_features(urls):
"""
Extract features from a list of URLs.
Args:
urls: List of URL strings
Returns:
Numpy array of feature vectors
"""
feature_vectors = []
# Use tqdm for a progress bar
for url in tqdm.tqdm(urls, desc="Extracting features"):
try:
features = extract_features(url)
feature_vectors.append(features)
except Exception as e:
print(f"Error extracting features from {url}: {str(e)}")
# Insert a vector of zeros in case of error
feature_vectors.append([0] * len(get_feature_names()))
return np.array(feature_vectors, dtype=np.float32)
# --- MLP Model ---
class PhishingMLP(nn.Module):
def __init__(self, input_size=22, hidden_sizes=[22, 30, 10], output_size=1):
"""
Multilayer Perceptron for Phishing URL Detection.
Args:
input_size: Number of input features (default: 22)
hidden_sizes: List of neurons in each hidden layer
output_size: Number of output classes (1 for binary)
"""
super(PhishingMLP, self).__init__()
self.layers = nn.ModuleList()
# Input layer to first hidden layer
self.layers.append(nn.Linear(input_size, hidden_sizes[0]))
self.layers.append(nn.ReLU())
# Hidden layers
for i in range(len(hidden_sizes) - 1):
self.layers.append(nn.Linear(hidden_sizes[i], hidden_sizes[i+1]))
self.layers.append(nn.ReLU())
# Output layer
self.layers.append(nn.Linear(hidden_sizes[-1], output_size))
self.layers.append(nn.Sigmoid())
def forward(self, x):
"""Forward pass through the network."""
for layer in self.layers:
x = layer(x)
return x
# --- Training Functions ---
def train_mlp(model, train_loader, val_loader, epochs=25, learning_rate=0.001, device="cpu"):
"""
Train the MLP model.
Args:
model: The MLP model
train_loader: DataLoader for training data
val_loader: DataLoader for validation data
epochs: Number of training epochs
learning_rate: Learning rate for optimization
device: Device to train on (cpu or cuda)
Returns:
Tuple of (trained_model, train_losses, val_losses, val_accuracies)
"""
model.to(device)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
train_losses = []
val_losses = []
val_accuracies = []
print(f"Training on {device}...")
for epoch in range(epochs):
# Training phase
model.train()
running_loss = 0.0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward + backward + optimize
outputs = model(inputs)
loss = criterion(outputs, labels.unsqueeze(1).float())
loss.backward()
optimizer.step()
running_loss += loss.item()
# Calculate average training loss
epoch_train_loss = running_loss / len(train_loader)
train_losses.append(epoch_train_loss)
# Validation phase
model.eval()
val_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
# Calculate validation loss
loss = criterion(outputs, labels.unsqueeze(1).float())
val_loss += loss.item()
# Calculate accuracy
predicted = (outputs > 0.5).float()
total += labels.size(0)
correct += (predicted.squeeze() == labels.float()).sum().item()
# Calculate average validation loss and accuracy
epoch_val_loss = val_loss / len(val_loader)
val_losses.append(epoch_val_loss)
val_accuracy = 100 * correct / total
val_accuracies.append(val_accuracy)
# Print progress
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {epoch_train_loss:.4f}, Val Loss: {epoch_val_loss:.4f}, Val Acc: {val_accuracy:.2f}%")
return model, train_losses, val_losses, val_accuracies
def evaluate_model(model, test_loader, device):
"""
Evaluate the trained model on test data.
Args:
model: Trained model
test_loader: DataLoader for test data
device: Device to evaluate on
Returns:
Tuple of (accuracy, precision, recall, f1_score)
"""
model.to(device)
model.eval()
correct = 0
total = 0
true_positives = 0
false_positives = 0
false_negatives = 0
healthcare_correct = 0
healthcare_total = 0
feature_idx = get_feature_names().index('healthcare_relevance')
healthcare_threshold = 0.5 # Threshold for considering a URL healthcare-related
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(device), labels.to(device)
# Forward pass
outputs = model(inputs)
predicted = (outputs > 0.5).float().squeeze()
# Update counts
total += labels.size(0)
correct += (predicted == labels.float()).sum().item()
# Metrics calculation
for i in range(labels.size(0)):
if labels[i] == 1 and predicted[i] == 1:
true_positives += 1
elif labels[i] == 0 and predicted[i] == 1:
false_positives += 1
elif labels[i] == 1 and predicted[i] == 0:
false_negatives += 1
# Check healthcare relevance
if inputs[i, feature_idx] >= healthcare_threshold:
healthcare_total += 1
if predicted[i] == labels[i]:
healthcare_correct += 1
# Calculate metrics
accuracy = 100 * correct / total
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0.0
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0.0
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0
# Healthcare-specific accuracy
healthcare_accuracy = 100 * healthcare_correct / healthcare_total if healthcare_total > 0 else 0.0
print(f"Overall Test Accuracy: {accuracy:.2f}%")
print(f"Precision: {precision:.4f}, Recall: {recall:.4f}, F1-Score: {f1:.4f}")
print(f"Healthcare URLs identified: {healthcare_total} ({healthcare_total/total*100:.2f}%)")
print(f"Healthcare URL Detection Accuracy: {healthcare_accuracy:.2f}%")
return accuracy, precision, recall, f1, healthcare_accuracy
def plot_training_results(train_losses, val_losses, val_accuracies):
"""
Plot training metrics.
Args:
train_losses: List of training losses
val_losses: List of validation losses
val_accuracies: List of validation accuracies
"""
plt.figure(figsize=(15, 5))
# Plot losses
plt.subplot(1, 2, 1)
plt.plot(train_losses, label='Training Loss')
plt.plot(val_losses, label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training and Validation Loss')
plt.legend()
# Plot accuracy
plt.subplot(1, 2, 2)
plt.plot(val_accuracies, label='Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.title('Validation Accuracy')
plt.legend()
plt.tight_layout()
plt.savefig('training_results.png')
plt.show()
def analyze_healthcare_features(features, labels, pred_labels):
"""
Analyze how the model performs on healthcare-related URLs.
Args:
features: Feature vectors
labels: True labels
pred_labels: Predicted labels
"""
healthcare_idx = get_feature_names().index('healthcare_relevance')
healthcare_scores = features[:, healthcare_idx]
# Define thresholds
thresholds = [0.1, 0.3, 0.5, 0.7, 0.9]
print("\n=== Healthcare URL Analysis ===")
print("Healthcare relevance score distribution:")
for threshold in thresholds:
count = np.sum(healthcare_scores >= threshold)
percent = (count / len(healthcare_scores)) * 100
print(f" Score >= {threshold}: {count} URLs ({percent:.2f}%)")
# Analyze performance at different healthcare relevance levels
for threshold in thresholds:
mask = healthcare_scores >= threshold
if np.sum(mask) == 0:
continue
h_labels = labels[mask]
h_preds = pred_labels[mask]
h_accuracy = np.mean(h_labels == h_preds) * 100
benign_count = np.sum(h_labels == 0)
malicious_count = np.sum(h_labels == 1)
print(f"\nFor healthcare relevance >= {threshold}:")
print(f" URLs: {np.sum(mask)} ({benign_count} benign, {malicious_count} malicious)")
print(f" Accuracy: {h_accuracy:.2f}%")
# Calculate healthcare-specific metrics
tp = np.sum((h_labels == 1) & (h_preds == 1))
fp = np.sum((h_labels == 0) & (h_preds == 1))
fn = np.sum((h_labels == 1) & (h_preds == 0))
precision = tp / (tp + fp) if (tp + fp) > 0 else 0
recall = tp / (tp + fn) if (tp + fn) > 0 else 0
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
print(f" Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}")
# Calculate false positive rate for healthcare URLs
if benign_count > 0:
h_fpr = np.sum((h_labels == 0) & (h_preds == 1)) / benign_count
print(f" False Positive Rate: {h_fpr:.4f}")
# Calculate false negative rate for healthcare URLs
if malicious_count > 0:
h_fnr = np.sum((h_labels == 1) & (h_preds == 0)) / malicious_count
print(f" False Negative Rate: {h_fnr:.4f}")
# --- Main Function ---
def main():
"""Main function to run the entire pipeline."""
# Configuration
batch_size = 32
learning_rate = 0.001
epochs = 20
test_size = 0.2
val_size = 0.2
random_seed = 42
device = "cuda" if torch.cuda.is_available() else "cpu"
# Filenames
huggingface_file = "urls.json"
phiusiil_file = "PhiUSIIL_Phishing_URL_Dataset.csv"
kaggle_file = "malicious_phish.csv"
# Load datasets
print("Loading datasets...")
huggingface_data = load_huggingface_data(huggingface_file)
phiusiil_data = load_phiusiil_data(phiusiil_file)
kaggle_data = load_kaggle_data(kaggle_file)
# Combine and deduplicate datasets
print("Combining and deduplicating datasets...")
urls, labels = combine_and_deduplicate([huggingface_data, phiusiil_data, kaggle_data])
# Extract features
print("Extracting features...")
features = extract_all_features(urls)
# Split into train, validation, and test sets
print("Splitting data...")
X_train_val, X_test, y_train_val, y_test = train_test_split(
features, labels, test_size=test_size, random_state=random_seed, stratify=labels
)
X_train, X_val, y_train, y_val = train_test_split(
X_train_val, y_train_val, test_size=val_size/(1-test_size),
random_state=random_seed, stratify=y_train_val
)
# Standardize features
print("Standardizing features...")
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.transform(X_val)
X_test = scaler.transform(X_test)
# Create PyTorch datasets and dataloaders
print("Creating DataLoaders...")
train_dataset = URLDataset(X_train, y_train)
val_dataset = URLDataset(X_val, y_val)
test_dataset = URLDataset(X_test, y_test)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Initialize and train model
print("Initializing model...")
input_size = features.shape[1] # Number of features
model = PhishingMLP(input_size=input_size)
print("Training model...")
trained_model, train_losses, val_losses, val_accuracies = train_mlp(
model, train_loader, val_loader, epochs=epochs,
learning_rate=learning_rate, device=device
)
# Save trained model
print("Saving model...")
model_path = "phishing_mlp_model.pth"
torch.save(trained_model.state_dict(), model_path)
print(f"Model saved to {model_path}")
# Evaluate on test set
print("\nEvaluating model on test set...")
acc, prec, rec, f1, healthcare_acc = evaluate_model(trained_model, test_loader, device)
# Plot results
plot_training_results(train_losses, val_losses, val_accuracies)
# Further healthcare analysis
y_pred = []
trained_model.eval()
with torch.no_grad():
for inputs, _ in test_loader:
inputs = inputs.to(device)
outputs = trained_model(inputs)
predicted = (outputs > 0.5).float().squeeze().cpu().numpy()
y_pred.extend(predicted.tolist())
analyze_healthcare_features(X_test, np.array(y_test), np.array(y_pred))
# Print feature importance summary
feature_names = get_feature_names()
healthcare_idx = feature_names.index('healthcare_relevance')
healthcare_scores = features[:, healthcare_idx]
high_healthcare = healthcare_scores >= 0.5
print("\n=== Healthcare URL Examples ===")
high_healthcare_indices = np.where(high_healthcare)[0][:5] # Get first 5 indices
for idx in high_healthcare_indices:
print(f"URL: {urls[idx]}")
print(f"Healthcare Score: {healthcare_scores[idx]:.2f}")
print(f"Label: {'Malicious' if labels[idx] == 1 else 'Benign'}")
print()
# Summary
print("\n=== Summary ===")
print(f"Total URLs processed: {len(urls)}")
print(f"Training set: {len(X_train)} URLs")
print(f"Validation set: {len(X_val)} URLs")
print(f"Test set: {len(X_test)} URLs")
print(f"Model input features: {input_size}")
print(f"Test Accuracy: {acc:.2f}%")
print(f"Healthcare URL Accuracy: {healthcare_acc:.2f}%")
print(f"Precision: {prec:.4f}, Recall: {rec:.4f}, F1-Score: {f1:.4f}")
print("\nTraining complete!")
if __name__ == "__main__":
main() |