brain-tumor-classifier / TumorModel.py
Codewithsalty's picture
Upload 3 files
253dbe1 verified
import torch.nn as nn
class TumorClassification(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(32 * 56 * 56, 128),
nn.ReLU(),
nn.Linear(128, 4) # 4 classes: glioma, meningioma, notumor, pituitary
)
def forward(self, x):
return self.model(x)
class GliomaStageModel(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Linear(9, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 4) # 4 glioma stages
)
def forward(self, x):
return self.model(x)