|
import torch.nn as nn
|
|
|
|
class TumorClassification(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.model = nn.Sequential(
|
|
nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(),
|
|
nn.MaxPool2d(2),
|
|
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(),
|
|
nn.MaxPool2d(2),
|
|
nn.Flatten(),
|
|
nn.Linear(32 * 56 * 56, 128),
|
|
nn.ReLU(),
|
|
nn.Linear(128, 4)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.model(x)
|
|
|
|
class GliomaStageModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.model = nn.Sequential(
|
|
nn.Linear(9, 128),
|
|
nn.ReLU(),
|
|
nn.Linear(128, 64),
|
|
nn.ReLU(),
|
|
nn.Linear(64, 4)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.model(x)
|
|
|