allminidatamarker
This model is a fine-tuned version of sentence-transformers/all-MiniLM-L12-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5075
- Precision: 0.2471
- Recall: 0.7698
- F1: 0.3741
- Accuracy: 0.8521
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.0925 | 1.0 | 38 | 0.6276 | 0.0122 | 0.0719 | 0.0208 | 0.8231 |
1.0925 | 2.0 | 76 | 0.3662 | 0.0677 | 0.4245 | 0.1167 | 0.8200 |
0.5958 | 3.0 | 114 | 0.4129 | 0.1643 | 0.7338 | 0.2684 | 0.8132 |
0.5958 | 4.0 | 152 | 0.4021 | 0.2243 | 0.8777 | 0.3572 | 0.8240 |
0.5958 | 5.0 | 190 | 0.3689 | 0.2495 | 0.8921 | 0.3899 | 0.8458 |
0.1649 | 6.0 | 228 | 0.3811 | 0.2597 | 0.8201 | 0.3945 | 0.8573 |
0.1649 | 7.0 | 266 | 0.4279 | 0.2806 | 0.8417 | 0.4209 | 0.8602 |
0.0941 | 8.0 | 304 | 0.4482 | 0.2322 | 0.7050 | 0.3494 | 0.8535 |
0.0941 | 9.0 | 342 | 0.4992 | 0.1965 | 0.5612 | 0.2910 | 0.8483 |
0.0941 | 10.0 | 380 | 0.5075 | 0.2471 | 0.7698 | 0.3741 | 0.8521 |
Framework versions
- Transformers 4.53.2
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Corran/allminidatamarker
Base model
sentence-transformers/all-MiniLM-L12-v2