lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5422
  • Answer: {'precision': 0.8987804878048781, 'recall': 0.9020807833537332, 'f1': 0.9004276114844226, 'number': 817}
  • Header: {'precision': 0.6528925619834711, 'recall': 0.6638655462184874, 'f1': 0.6583333333333333, 'number': 119}
  • Question: {'precision': 0.8772845953002611, 'recall': 0.935933147632312, 'f1': 0.9056603773584906, 'number': 1077}
  • Overall Precision: 0.8727
  • Overall Recall: 0.9061
  • Overall F1: 0.8891
  • Overall Accuracy: 0.8153

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4117 10.5263 200 1.1040 {'precision': 0.8423475258918297, 'recall': 0.8959608323133414, 'f1': 0.8683274021352312, 'number': 817} {'precision': 0.4925373134328358, 'recall': 0.5546218487394958, 'f1': 0.5217391304347825, 'number': 119} {'precision': 0.8823529411764706, 'recall': 0.8913649025069638, 'f1': 0.8868360277136259, 'number': 1077} 0.8407 0.8733 0.8567 0.7772
0.0494 21.0526 400 1.4246 {'precision': 0.8377142857142857, 'recall': 0.8971848225214198, 'f1': 0.8664302600472813, 'number': 817} {'precision': 0.5655737704918032, 'recall': 0.5798319327731093, 'f1': 0.5726141078838175, 'number': 119} {'precision': 0.8783542039355993, 'recall': 0.9117920148560817, 'f1': 0.894760820045558, 'number': 1077} 0.8435 0.8862 0.8643 0.7895
0.0149 31.5789 600 1.3688 {'precision': 0.8272827282728272, 'recall': 0.9204406364749081, 'f1': 0.8713789107763616, 'number': 817} {'precision': 0.6436781609195402, 'recall': 0.47058823529411764, 'f1': 0.5436893203883495, 'number': 119} {'precision': 0.8790613718411552, 'recall': 0.904363974001857, 'f1': 0.891533180778032, 'number': 1077} 0.8470 0.8852 0.8657 0.8066
0.0074 42.1053 800 1.5512 {'precision': 0.8574739281575898, 'recall': 0.9057527539779682, 'f1': 0.880952380952381, 'number': 817} {'precision': 0.6140350877192983, 'recall': 0.5882352941176471, 'f1': 0.6008583690987125, 'number': 119} {'precision': 0.8713656387665198, 'recall': 0.9182915506035283, 'f1': 0.8942133815551537, 'number': 1077} 0.8518 0.8937 0.8722 0.7908
0.004 52.6316 1000 1.5808 {'precision': 0.8884892086330936, 'recall': 0.9069767441860465, 'f1': 0.8976377952755905, 'number': 817} {'precision': 0.6239316239316239, 'recall': 0.6134453781512605, 'f1': 0.6186440677966102, 'number': 119} {'precision': 0.8902991840435177, 'recall': 0.9117920148560817, 'f1': 0.9009174311926607, 'number': 1077} 0.8744 0.8922 0.8832 0.8017
0.0025 63.1579 1200 1.6746 {'precision': 0.8933333333333333, 'recall': 0.9020807833537332, 'f1': 0.8976857490864798, 'number': 817} {'precision': 0.5873015873015873, 'recall': 0.6218487394957983, 'f1': 0.6040816326530611, 'number': 119} {'precision': 0.8998194945848376, 'recall': 0.9257195914577531, 'f1': 0.9125858123569794, 'number': 1077} 0.8781 0.8982 0.8880 0.7978
0.0014 73.6842 1400 1.5175 {'precision': 0.8628841607565012, 'recall': 0.8935128518971848, 'f1': 0.8779314491882141, 'number': 817} {'precision': 0.5833333333333334, 'recall': 0.5882352941176471, 'f1': 0.5857740585774059, 'number': 119} {'precision': 0.8736933797909407, 'recall': 0.9312906220984215, 'f1': 0.9015730337078652, 'number': 1077} 0.8529 0.8957 0.8738 0.8073
0.0007 84.2105 1600 1.5422 {'precision': 0.8987804878048781, 'recall': 0.9020807833537332, 'f1': 0.9004276114844226, 'number': 817} {'precision': 0.6528925619834711, 'recall': 0.6638655462184874, 'f1': 0.6583333333333333, 'number': 119} {'precision': 0.8772845953002611, 'recall': 0.935933147632312, 'f1': 0.9056603773584906, 'number': 1077} 0.8727 0.9061 0.8891 0.8153
0.0007 94.7368 1800 1.6505 {'precision': 0.8702380952380953, 'recall': 0.8947368421052632, 'f1': 0.8823174411587205, 'number': 817} {'precision': 0.5703125, 'recall': 0.6134453781512605, 'f1': 0.5910931174089069, 'number': 119} {'precision': 0.8894927536231884, 'recall': 0.9117920148560817, 'f1': 0.9005043558000918, 'number': 1077} 0.8620 0.8872 0.8744 0.8034
0.0007 105.2632 2000 1.6541 {'precision': 0.8685446009389671, 'recall': 0.9057527539779682, 'f1': 0.8867585380467345, 'number': 817} {'precision': 0.6095238095238096, 'recall': 0.5378151260504201, 'f1': 0.5714285714285715, 'number': 119} {'precision': 0.8938700823421775, 'recall': 0.9071494893221913, 'f1': 0.9004608294930875, 'number': 1077} 0.8688 0.8847 0.8767 0.8024
0.0004 115.7895 2200 1.6276 {'precision': 0.866902237926973, 'recall': 0.9008567931456548, 'f1': 0.8835534213685473, 'number': 817} {'precision': 0.64, 'recall': 0.5378151260504201, 'f1': 0.5844748858447488, 'number': 119} {'precision': 0.8941704035874439, 'recall': 0.9257195914577531, 'f1': 0.9096715328467153, 'number': 1077} 0.8706 0.8927 0.8815 0.8082
0.0003 126.3158 2400 1.6682 {'precision': 0.8790419161676647, 'recall': 0.8984088127294981, 'f1': 0.8886198547215496, 'number': 817} {'precision': 0.5964912280701754, 'recall': 0.5714285714285714, 'f1': 0.5836909871244635, 'number': 119} {'precision': 0.8928892889288929, 'recall': 0.9210770659238626, 'f1': 0.9067641681901281, 'number': 1077} 0.8709 0.8912 0.8809 0.8042

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cpu
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Cuma/lilt-en-funsd

Finetuned
(47)
this model