Cyber-ThreaD/CyBERT-APTNER

This model is a fine-tuned version of SynamicTechnologies/CYBERT on the APTNER dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4543
  • Precision: 0.4372
  • Recall: 0.4293
  • F1: 0.4332
  • Accuracy: 0.9043

It achieves the following results on the prediction set:

  • Loss: 0.3602
  • Precision: 0.5489
  • Recall: 0.5125
  • F1: 0.5301
  • Accuracy: 0.9220

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.8182 0.59 500 0.5569 0.5219 0.2431 0.3317 0.9014
0.5357 1.19 1000 0.4980 0.4625 0.2895 0.3561 0.9024
0.4417 1.78 1500 0.4773 0.4029 0.3572 0.3787 0.9016
0.394 2.37 2000 0.4840 0.3697 0.3943 0.3816 0.8943
0.3534 2.97 2500 0.4742 0.3586 0.4437 0.3966 0.8914
0.3048 3.56 3000 0.4543 0.4372 0.4293 0.4332 0.9043
0.2992 4.15 3500 0.4846 0.3587 0.4392 0.3949 0.8907
0.2675 4.74 4000 0.4760 0.4100 0.4530 0.4304 0.9000
0.2454 5.34 4500 0.4702 0.4123 0.4407 0.4260 0.9014
0.2391 5.93 5000 0.4743 0.3957 0.4638 0.4270 0.8979
0.2088 6.52 5500 0.4778 0.4224 0.4485 0.4351 0.9038
0.2076 7.12 6000 0.5050 0.3736 0.4644 0.4140 0.8930
0.1946 7.71 6500 0.4964 0.4009 0.4599 0.4284 0.8977
0.1808 8.3 7000 0.4878 0.4226 0.4554 0.4384 0.9028
0.1683 8.9 7500 0.4947 0.3954 0.4626 0.4264 0.8976
0.1681 9.49 8000 0.4916 0.4081 0.4662 0.4352 0.9001

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1

Citing & Authors

If you use the model kindly cite the following work

@inproceedings{deka2024attacker,
  title={AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset},
  author={Deka, Pritam and Rajapaksha, Sampath and Rani, Ruby and Almutairi, Amirah and Karafili, Erisa},
  booktitle={International Conference on Web Information Systems Engineering},
  pages={255--270},
  year={2024},
  organization={Springer}
}
Downloads last month
23
Safetensors
Model size
82.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Cyber-ThreaD/CyBERT-APTNER

Finetuned
(4)
this model