|
|
|
|
|
|
|
|
|
import types |
|
import torch |
|
import math, os, gc |
|
from torch.nn import functional as F |
|
import torch.nn as nn |
|
from typing import List, Dict |
|
|
|
MyModule = nn.Module |
|
def __nop(ob): |
|
return ob |
|
MyFunction = __nop |
|
|
|
|
|
|
|
|
|
|
|
|
|
if os.environ["RWKV_JIT_ON"] == "1": |
|
MyModule = torch.jit.ScriptModule |
|
MyFunction = torch.jit.script_method |
|
|
|
RWKV_HEAD_QK_DIM = 0 |
|
|
|
DEBUG_TIME = False |
|
|
|
RWKV_RESCALE_LAYER = 6 |
|
|
|
|
|
|
|
class RWKV_RNN(MyModule): |
|
def __init__(self, args): |
|
super().__init__() |
|
|
|
self.args = args |
|
self.FLOAT_MODE = args.FLOAT_MODE |
|
self.RUN_DEVICE = args.RUN_DEVICE |
|
|
|
with torch.no_grad(): |
|
w = torch.load(args.MODEL_NAME + '.pth', map_location='cpu') |
|
|
|
keys = list(w.keys()) |
|
if 'pos_emb_x' in keys: |
|
w['pos_emb'] = (w['pos_emb_x'] + w['pos_emb_y']).reshape(args.ctx_len+1, -1)[:-1,:] |
|
keys = list(w.keys()) |
|
print_need_newline = False |
|
for x in keys: |
|
block_id = 0 |
|
if 'blocks.' in x: |
|
block_id = int(x.split('.')[1]) |
|
if 'att.output.weight' in x: |
|
w[x] = w[x] / (2 ** int(block_id // RWKV_RESCALE_LAYER)) |
|
if 'ffn.value.weight' in x: |
|
w[x] = w[x] / (2 ** int(block_id // RWKV_RESCALE_LAYER)) |
|
|
|
if '.time_' in x: |
|
w[x] = w[x].squeeze() |
|
if DEBUG_TIME: |
|
print(x, w[x].numpy()) |
|
if '.time_decay' in x: |
|
w[x] = w[x].float() |
|
w[x] = -torch.exp(w[x]) |
|
elif '.time_first' in x: |
|
w[x] = w[x].float() |
|
else: |
|
if self.FLOAT_MODE == "fp32": |
|
w[x] = w[x].float() |
|
elif self.FLOAT_MODE == "bf16": |
|
w[x] = w[x].bfloat16() |
|
elif self.FLOAT_MODE == "fp16": |
|
w[x] = w[x].half() |
|
|
|
w[x].requires_grad = False |
|
if args.RUN_DEVICE == 'cuda' and x != 'emb.weight': |
|
w[x] = w[x].cuda() |
|
|
|
if ('blocks.' not in x) or ('blocks.0.' in x): |
|
if print_need_newline: |
|
print_need_newline = False |
|
else: |
|
print_need_newline = True |
|
|
|
|
|
keys = list(w.keys()) |
|
self.w = types.SimpleNamespace() |
|
for x in keys: |
|
xx = x.split('.') |
|
here = self.w |
|
for i in range(len(xx)): |
|
if xx[i].isdigit(): |
|
ii = int(xx[i]) |
|
if ii not in here: |
|
here[ii] = types.SimpleNamespace() |
|
here = here[ii] |
|
else: |
|
if i == len(xx) - 1: |
|
setattr(here, xx[i], w[x]) |
|
elif not hasattr(here, xx[i]): |
|
if xx[i+1].isdigit(): |
|
setattr(here, xx[i], {}) |
|
else: |
|
setattr(here, xx[i], types.SimpleNamespace()) |
|
here = getattr(here, xx[i]) |
|
|
|
self.eval() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def LN(self, x, w): |
|
return F.layer_norm(x, (self.args.n_embd,), weight=w.weight, bias=w.bias) |
|
|
|
|
|
|
|
@MyFunction |
|
def FF(self, x, state, i:int, time_mix_k, time_mix_r, kw, vw, rw): |
|
if self.FLOAT_MODE == "bf16": |
|
xk = x * time_mix_k + state[5*i+0].type(torch.bfloat16) * (1 - time_mix_k) |
|
xr = x * time_mix_r + state[5*i+0].type(torch.bfloat16) * (1 - time_mix_r) |
|
state[5*i+0] = x.float() |
|
elif self.FLOAT_MODE == "fp16": |
|
xk = x * time_mix_k + state[5*i+0].half() * (1 - time_mix_k) |
|
xr = x * time_mix_r + state[5*i+0].half() * (1 - time_mix_r) |
|
state[5*i+0] = x.float() |
|
else: |
|
xk = x * time_mix_k + state[5*i+0] * (1 - time_mix_k) |
|
xr = x * time_mix_r + state[5*i+0] * (1 - time_mix_r) |
|
state[5*i+0] = x |
|
|
|
r = torch.sigmoid(rw @ xr) |
|
k = torch.square(torch.relu(kw @ xk)) |
|
kv = vw @ k |
|
|
|
return r * kv |
|
|
|
@MyFunction |
|
def SA(self, x, state, i:int, time_mix_k, time_mix_v, time_mix_r, time_first, time_decay, kw, vw, rw, ow): |
|
if self.FLOAT_MODE == "bf16": |
|
xk = x * time_mix_k + state[5*i+1].type(torch.bfloat16) * (1 - time_mix_k) |
|
xv = x * time_mix_v + state[5*i+1].type(torch.bfloat16) * (1 - time_mix_v) |
|
xr = x * time_mix_r + state[5*i+1].type(torch.bfloat16) * (1 - time_mix_r) |
|
state[5*i+1] = x.float() |
|
elif self.FLOAT_MODE == "fp16": |
|
xk = x * time_mix_k + state[5*i+1].half() * (1 - time_mix_k) |
|
xv = x * time_mix_v + state[5*i+1].half() * (1 - time_mix_v) |
|
xr = x * time_mix_r + state[5*i+1].half() * (1 - time_mix_r) |
|
state[5*i+1] = x.float() |
|
else: |
|
xk = x * time_mix_k + state[5*i+1] * (1 - time_mix_k) |
|
xv = x * time_mix_v + state[5*i+1] * (1 - time_mix_v) |
|
xr = x * time_mix_r + state[5*i+1] * (1 - time_mix_r) |
|
state[5*i+1] = x |
|
|
|
r = torch.sigmoid(rw @ xr) |
|
k = kw @ xk |
|
v = vw @ xv |
|
|
|
if '16' in self.FLOAT_MODE: |
|
kk = k.float() |
|
vv = v.float() |
|
else: |
|
kk = k |
|
vv = v |
|
aa = state[5*i+2] |
|
bb = state[5*i+3] |
|
pp = state[5*i+4] |
|
ww = time_first + kk |
|
p = torch.maximum(pp, ww) |
|
e1 = torch.exp(pp - p) |
|
e2 = torch.exp(ww - p) |
|
a = e1 * aa + e2 * vv |
|
b = e1 * bb + e2 |
|
ww = pp + time_decay |
|
p = torch.maximum(ww, kk) |
|
e1 = torch.exp(ww - p) |
|
e2 = torch.exp(kk - p) |
|
state[5*i+2] = e1 * aa + e2 * vv |
|
state[5*i+3] = e1 * bb + e2 |
|
state[5*i+4] = p |
|
if self.FLOAT_MODE == "bf16": |
|
wkv = (a / b).type(torch.bfloat16) |
|
elif self.FLOAT_MODE == "fp16": |
|
wkv = (a / b).half() |
|
else: |
|
wkv = a / b |
|
|
|
return ow @ (r * wkv) |
|
|
|
def forward(self, ctx, state, preprocess_only = False): |
|
with torch.no_grad(): |
|
w = self.w |
|
args = self.args |
|
|
|
x = w.emb.weight[ctx[-1]] |
|
if self.RUN_DEVICE == 'cuda': |
|
x = x.cuda() |
|
try: |
|
pos_emb = w.pos_emb[len(ctx)-1] |
|
x = x + pos_emb |
|
except: |
|
pass |
|
|
|
if state == None: |
|
state = torch.zeros(args.n_layer * 5, args.n_embd, device=self.RUN_DEVICE) |
|
for i in range(args.n_layer): |
|
state[5*i+4] -= 1e30 |
|
|
|
for i in range(args.n_layer): |
|
if i == 0: |
|
x = self.LN(x, w.blocks[i].ln0) |
|
|
|
ww = w.blocks[i].att |
|
x = x + self.SA(self.LN(x, w.blocks[i].ln1), state, i, |
|
ww.time_mix_k, ww.time_mix_v, ww.time_mix_r, ww.time_first, ww.time_decay, |
|
ww.key.weight, ww.value.weight, ww.receptance.weight, ww.output.weight) |
|
|
|
ww = w.blocks[i].ffn |
|
x = x + self.FF(self.LN(x, w.blocks[i].ln2), state, i, |
|
ww.time_mix_k, ww.time_mix_r, |
|
ww.key.weight, ww.value.weight, ww.receptance.weight) |
|
|
|
if (i+1) % RWKV_RESCALE_LAYER == 0: |
|
x = x / 2 |
|
|
|
if preprocess_only: |
|
return state |
|
|
|
x = self.LN(x, w.ln_out) |
|
x = w.head.weight @ x |
|
|
|
return x.float(), state |
|
|