File size: 2,105 Bytes
40d619e
 
589f886
 
 
8126bf7
40d619e
589f886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
language:
- en
- zh
inference: false
---
# SeqGPT-560M

<!-- Provide a quick summary of what the model is/does. -->

This is SeqGPT-560M weight, a compact model targeting open-domain Natural Language Understanding (NLU). We refer you to our github [repo](https://github.com/Alibaba-NLP/SeqGPT) for more details.


## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

The model is fine-tuned based on [BLOOMZ-560M](https://huggingface.co/bigscience/bloomz-560m).

### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** [SeqGPT](https://github.com/Alibaba-NLP/SeqGPT)
- **Paper:** [arxiv](https://arxiv.org/abs/2308.10529)
- **Demo:** [demo](https://www.modelscope.cn/studios/TTCoding/open_ner/summary)

## Uses


```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel

model_name_or_path = 'Yirany/SeqGPT-560M'
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
tokenizer.padding_side = 'left'
tokenizer.truncation_side = 'left'

if torch.cuda.is_available():
    model = model.half().cuda()
model.eval()
GEN_TOK = '[GEN]'

while True:
    sent = input('输入/Input: ').strip()
    task = input('分类/classify press 1, 抽取/extract press 2: ').strip()
    labels = input('标签集/Label-Set (e.g, labelA,LabelB,LabelC): ').strip().replace(',', ',')
    task = '分类' if task == '1' else '抽取'

    # Changing the instruction can harm the performance
    p = '输入: {}\n{}: {}\n输出: {}'.format(sent, task, labels, GEN_TOK)
    input_ids = tokenizer(p, return_tensors="pt", padding=True, truncation=True, max_length=1024)
    input_ids = input_ids.to(model.device)
    outputs = model.generate(**input_ids, num_beams=4, do_sample=False, max_new_tokens=256)
    input_ids = input_ids.get('input_ids', input_ids)
    outputs = outputs[0][len(input_ids[0]):]
    response = tokenizer.decode(outputs, skip_special_tokens=True)
    print('BOT: ========== \n{}'.format(response))
```