0-LLAMA3SP-mule / README.md
DEVCamiloSepulveda's picture
Upload folder using huggingface_hub
92bc4aa verified
metadata
license: llama3.2
language:
  - en
base_model: meta-llama/Llama-3.2-1B
pipeline_tag: text-classification
library_name: peft
tags:
  - regression
  - story-point-estimation
  - software-engineering
datasets:
  - mule
metrics:
  - mae
  - mdae
model-index:
  - name: llama-3.2-1b-story-point-estimation
    results:
      - task:
          type: regression
          name: Story Point Estimation
        dataset:
          name: mule Dataset
          type: mule
          split: test
        metrics:
          - type: mae
            value: 2.894
            name: Mean Absolute Error (MAE)
          - type: mdae
            value: 2.599
            name: Median Absolute Error (MdAE)

LLAMA 3 Story Point Estimator - mule

This model is fine-tuned on issue descriptions from mule and tested on mule for story point estimation.

Model Details

  • Base Model: LLAMA 3.2 1B

  • Training Project: mule

  • Test Project: mule

  • Task: Story Point Estimation (Regression)

  • Architecture: PEFT (LoRA)

  • Input: Issue titles

  • Output: Story point estimation (continuous value)

Usage

from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import PeftConfig, PeftModel

# Load peft config model
config = PeftConfig.from_pretrained("DEVCamiloSepulveda/0-LLAMA3SP-mule")

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/0-LLAMA3SP-mule")
base_model = AutoModelForSequenceClassification.from_pretrained(
    config.base_model_name_or_path,
    num_labels=1,
    torch_dtype=torch.float16,
    device_map='auto'
)
model = PeftModel.from_pretrained(base_model, "DEVCamiloSepulveda/0-LLAMA3SP-mule")

# Prepare input text
text = "Your issue description here"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length")

# Get prediction
outputs = model(**inputs)
story_points = outputs.logits.item()

Training Details

  • Fine-tuning method: LoRA (Low-Rank Adaptation)
  • Sequence length: 20 tokens
  • Best training epoch: 1 / 20 epochs
  • Batch size: 32
  • Training time: 45.941 seconds
  • Mean Absolute Error (MAE): 2.894
  • Median Absolute Error (MdAE): 2.599

Framework versions

  • PEFT 0.14.0