metadata
license: llama3.2
language:
- en
base_model:
- meta-llama/Llama-3.2-1B
pipeline_tag: text-classification
library_name: transformers
tags:
- regression
- story-point-estimation
- software-engineering
datasets:
- mulestudio
- titanium
metrics:
- mae
- mdae
model-index:
- name: llama-3.2-1b-story-point-estimation
results:
- task:
type: regression
name: Story Point Estimation
dataset:
type: titanium
name: titanium Dataset
split: test
metrics:
- type: mae
value: 3.652
name: Mean Absolute Error (MAE)
- type: mdae
value: 2.105
name: Median Absolute Error (MdAE)
LLAMA 3 Story Point Estimator - mulestudio - titanium
This model is fine-tuned on issue descriptions from mulestudio and tested on titanium for story point estimation.
Model Details
Base Model: LLAMA 3.2 1B
Training Project: mulestudio
Test Project: titanium
Task: Story Point Estimation (Regression)
Architecture: PEFT (LoRA)
Input: Issue titles
Output: Story point estimation (continuous value)
Usage
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import PeftModel
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/000-LLAMA3SP-mulestudio-titanium")
model = AutoModelForSequenceClassification.from_pretrained("DEVCamiloSepulveda/000-LLAMA3SP-mulestudio-titanium")
# Prepare input text
text = "Your issue description here"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length")
# Get prediction
outputs = model(**inputs)
story_points = outputs.logits.item()
Training Details
- Fine-tuning method: LoRA (Low-Rank Adaptation)
- Sequence length: 20 tokens
- Best training epoch: 3 / 20 epochs
- Batch size: 32
- Training time: 162.250 seconds
- Mean Absolute Error (MAE): 3.652
- Median Absolute Error (MdAE): 2.105