|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
## 简介 |
|
|
|
这是一款根据自然语言生成 SQL 的模型(NL2SQL/Text2SQL),是我们自研众多 NL2SQL 模型中最为基础的一版,其它高级版模型后续将陆续进行开源。 |
|
|
|
该模型基于 BART 架构,我们将 NL2SQL 问题建模为类似机器翻译的 Seq2Seq 形式,该模型的优势特点:参数规模较小、但 SQL 生成准确性也较高。 |
|
|
|
## 用法 |
|
|
|
NL2SQL 任务中输入参数含有用户查询文本+数据库表信息,目前按照以下格式拼接模型的输入文本: |
|
|
|
``` |
|
Question: 名人堂一共有多少球员 <sep> Tables: hall_of_fame: player_id, yearid, votedby, ballots, needed, votes, inducted, category, needed_note ; player_award: player_id, award_id, year, league_id, tie, notes <sep> |
|
``` |
|
|
|
具体使用方法参考以下示例: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSeq2SeqLM, MBartForConditionalGeneration, AutoTokenizer |
|
|
|
device = 'cuda' |
|
model_path = 'DMetaSoul/nl2sql-chinese-basic' |
|
sampling = False |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang='zh_CN') |
|
#model = MBartForConditionalGeneration.from_pretrained(model_path) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_path) |
|
model = model.half() |
|
model.to(device) |
|
|
|
|
|
input_texts = [ |
|
"Question: 所有章节的名称和描述是什么? <sep> Tables: sections: section id , course id , section name , section description , other details <sep>", |
|
"Question: 名人堂一共有多少球员 <sep> Tables: hall_of_fame: player_id, yearid, votedby, ballots, needed, votes, inducted, category, needed_note ; player_award: player_id, award_id, year, league_id, tie, notes ; player_award_vote: award_id, year, league_id, player_id, points_won, points_max, votes_first ; salary: year, team_id, league_id, player_id, salary ; player: player_id, birth_year, birth_month, birth_day, birth_country, birth_state, birth_city, death_year, death_month, death_day, death_country, death_state, death_city, name_first, name_last, name_given, weight <sep>" |
|
] |
|
inputs = tokenizer(input_texts, max_length=512, return_tensors="pt", |
|
padding=True, truncation=True) |
|
inputs = {k:v.to(device) for k,v in inputs.items() if k not in ["token_type_ids"]} |
|
|
|
with torch.no_grad(): |
|
if sampling: |
|
outputs = model.generate(**inputs, do_sample=True, top_k=50, top_p=0.95, |
|
temperature=1.0, num_return_sequences=1, |
|
max_length=512, return_dict_in_generate=True, output_scores=True) |
|
else: |
|
outputs = model.generate(**inputs, num_beams=4, num_return_sequences=1, |
|
max_length=512, return_dict_in_generate=True, output_scores=True) |
|
|
|
output_ids = outputs.sequences |
|
results = tokenizer.batch_decode(output_ids, skip_special_tokens=True, |
|
clean_up_tokenization_spaces=True) |
|
|
|
for question, sql in zip(input_texts, results): |
|
print(question) |
|
print('SQL: {}'.format(sql)) |
|
print() |
|
``` |
|
|
|
输入结果如下: |
|
|
|
``` |
|
Question: 所有章节的名称和描述是什么? <sep> Tables: sections: section id , course id , section name , section description , other details <sep> |
|
SQL: SELECT section name, section description FROM sections |
|
|
|
Question: 名人堂一共有多少球员 <sep> Tables: hall_of_fame: player_id, yearid, votedby, ballots, needed, votes, inducted, category, needed_note ; player_award: player_id, award_id, year, league_id, tie, notes ; player_award_vote: award_id, year, league_id, player_id, points_won, points_max, votes_first ; salary: year, team_id, league_id, player_id, salary ; player: player_id, birth_year, birth_month, birth_day, birth_country, birth_state, birth_city, death_year, death_month, death_day, death_country, death_state, death_city, name_first, name_last, name_given, weight <sep> |
|
SQL: SELECT count(*) FROM hall_of_fame |
|
``` |
|
|