PenguinMan's picture
Upload PPO LunarLander-v2 trained agent
7ff93e5
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f83f98a1700>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83f98a1790>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83f98a1820>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83f98a18b0>",
"_build": "<function ActorCriticPolicy._build at 0x7f83f98a1940>",
"forward": "<function ActorCriticPolicy.forward at 0x7f83f98a19d0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83f98a1a60>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83f98a1af0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f83f98a1b80>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83f98a1c10>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83f98a1ca0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83f98a1d30>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f83f98a4780>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1682157320574853673,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZ96L0tj5A/u42Vvhx3xr4VJCq+6L12vQAAAAAAAAAA84O5vcOhTrouura6HPu3tV73hDoTitc5AACAPwAAAADmQ8q9e+KcuuGVlrrPDJG1hmJLOgeurTkAAIA/AACAPwZImj5+JEQ/9hnUPSycxr5L8EE+X65KvgAAAAAAAAAAWm4zvntnjbyqv029YHjbu8vpDz6iz648AACAPwAAgD+6sUm+AeOcvMFvKztwe4I5SkUKPo7hW7oAAIA/AACAPx44pr6OON8+CidGPvmHsb6WBYy9qw7/vAAAAAAAAAAAva9TvlQ7xbxLS3C7Ck/XubN9MD7G0686AACAPwAAgD/N67K9rkOOuvArF7s6vhW31VDpuvPZNjoAAIA/AAAAAFogtT3JBRU+615tvc7dV75Zgg29Op77OwAAAAAAAAAAE8QOPtvJUz+Ot729VvKIvnEuKz2DqmC9AAAAAAAAAABmCma8e56bujrLKTggEyMzR3PkOr0oRLcAAIA/AACAP/iWs77jO1s/RAAwvkuwrb74Y4G+w8e1PQAAAAAAAAAAM8tru8OBSrpbUB05bwePtXJxgLmuMTm4AACAPwAAgD/aTpu94YCXusKql7vu0YU47xijOplVgTkAAIA/AAAAAGBvWL5UkJS849kHu8sHMrm23gk+gpcSOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfshbrn4xY0CUhpRSlIwBbJRN6AOMAXSUR0CT9RN/vv0AdX2UKGgGaAloD0MI5IV0eIhFcUCUhpRSlGgVTU4DaBZHQJP3aNWEK3N1fZQoaAZoCWgPQwgNjLysiaxgQJSGlFKUaBVN6ANoFkdAk/kwmZ3LWHV9lChoBmgJaA9DCFUUr7K2sF9AlIaUUpRoFU3oA2gWR0CT/X/n4fwJdX2UKGgGaAloD0MIsmSO5V11YUCUhpRSlGgVTegDaBZHQJQErWJ79ht1fZQoaAZoCWgPQwhVNNb+ToBiQJSGlFKUaBVN6ANoFkdAlAdx8lXzUnV9lChoBmgJaA9DCFD/WfNjg2VAlIaUUpRoFU3oA2gWR0CUCHhFmWdFdX2UKGgGaAloD0MISKgZUsXGYkCUhpRSlGgVTegDaBZHQJQJ5T3qRlp1fZQoaAZoCWgPQwj68ZcWdd5gQJSGlFKUaBVN6ANoFkdAlAvcYuTRpnV9lChoBmgJaA9DCM/XLJeNrj1AlIaUUpRoFUvmaBZHQJQL+KUFB6d1fZQoaAZoCWgPQwjkZU0s8KBsQJSGlFKUaBVNsAFoFkdAlAwUX531SXV9lChoBmgJaA9DCGWlSSmoFHFAlIaUUpRoFU0PA2gWR0CUEFllbu+idX2UKGgGaAloD0MISIjyBS16QUCUhpRSlGgVS+FoFkdAlBPc5Ke05XV9lChoBmgJaA9DCAg8MIBw42NAlIaUUpRoFU3oA2gWR0CUJY7bcoH+dX2UKGgGaAloD0MInl2+9WGpYkCUhpRSlGgVTegDaBZHQJQ+VNnGsFN1fZQoaAZoCWgPQwhp/MIryVJmQJSGlFKUaBVN6ANoFkdAlD9nRw6ySnV9lChoBmgJaA9DCKvoD828AWdAlIaUUpRoFU3oA2gWR0CUQSuPFNtZdX2UKGgGaAloD0MIZLDiVOt/a0CUhpRSlGgVTS4CaBZHQJRBmp6yB091fZQoaAZoCWgPQwjaWIl5VuNjQJSGlFKUaBVN6ANoFkdAlEXRj4Hoo3V9lChoBmgJaA9DCKMiTifZ+mJAlIaUUpRoFU3oA2gWR0CUSMq20AtGdX2UKGgGaAloD0MI+Q/pty+zYUCUhpRSlGgVTegDaBZHQJRK/ySV4X51fZQoaAZoCWgPQwg9tfrqKpZjQJSGlFKUaBVN6ANoFkdAlEyjtoi9qXV9lChoBmgJaA9DCKBQTx+BfUtAlIaUUpRoFUv/aBZHQJROIdPtUn51fZQoaAZoCWgPQwjLvcCsEGNxQJSGlFKUaBVL/2gWR0CUUCVYISlFdX2UKGgGaAloD0MIv2A3bFsARECUhpRSlGgVS8JoFkdAlFZX6ZYxL3V9lChoBmgJaA9DCPCLS1XatV9AlIaUUpRoFU3oA2gWR0CUWGOJ+DvmdX2UKGgGaAloD0MIYaku4GWybkCUhpRSlGgVTeoCaBZHQJRZbLLZBcB1fZQoaAZoCWgPQwipUN1cfIRjQJSGlFKUaBVN6ANoFkdAlF8ghr30w3V9lChoBmgJaA9DCHu7JTlgGWdAlIaUUpRoFU3oA2gWR0CUYgYQarFPdX2UKGgGaAloD0MIm42VmOfOYECUhpRSlGgVTegDaBZHQJRiMeEIw/R1fZQoaAZoCWgPQwiRRZp4B1NmQJSGlFKUaBVN6ANoFkdAlGJY42jwhHV9lChoBmgJaA9DCF34wfnU3G9AlIaUUpRoFU1/AWgWR0CUZ/i22G7BdX2UKGgGaAloD0MIxk54CU6kX0CUhpRSlGgVTegDaBZHQJRonTYukDZ1fZQoaAZoCWgPQwjZlZaRupBwQJSGlFKUaBVNWQFoFkdAlGmnZXdTHnV9lChoBmgJaA9DCDylg/W/YHFAlIaUUpRoFU2ZAmgWR0CUaqBHCoCNdX2UKGgGaAloD0MI4/+OqFCPTECUhpRSlGgVS+hoFkdAlHdEdBBzFXV9lChoBmgJaA9DCH78pUW9JnBAlIaUUpRoFU0fAWgWR0CUeU4keIVNdX2UKGgGaAloD0MIAyZw6264YkCUhpRSlGgVTegDaBZHQJR6mPCEYfp1fZQoaAZoCWgPQwimY84z9uJvQJSGlFKUaBVNbgFoFkdAlJIbfcer/HV9lChoBmgJaA9DCLe1heelk2ZAlIaUUpRoFU3oA2gWR0CUku/pMYdidX2UKGgGaAloD0MIKxTpfs6TcUCUhpRSlGgVTSECaBZHQJST98CxNZh1fZQoaAZoCWgPQwg02xX6YLNEQJSGlFKUaBVL0WgWR0CUlj2Bas6rdX2UKGgGaAloD0MIdv9YiA4KZUCUhpRSlGgVTegDaBZHQJSYmvZAY511fZQoaAZoCWgPQwhrtvKS/9VeQJSGlFKUaBVN6ANoFkdAlJzEBsANonV9lChoBmgJaA9DCFRSJ6CJ4G5AlIaUUpRoFU2MAmgWR0CUnuvuw5eadX2UKGgGaAloD0MIX5oiwGmBb0CUhpRSlGgVTQsDaBZHQJSgAY2sJY11fZQoaAZoCWgPQwiloNtLGhRuQJSGlFKUaBVNTgJoFkdAlKDBomG/OHV9lChoBmgJaA9DCIdtizKbdmNAlIaUUpRoFU3oA2gWR0CUo+p5/smfdX2UKGgGaAloD0MIUUtzK4S5ZECUhpRSlGgVTegDaBZHQJStOKoAGSp1fZQoaAZoCWgPQwg7Un3nF1VvQJSGlFKUaBVN3AFoFkdAlK1Y1cdHUnV9lChoBmgJaA9DCG7BUl3AyF9AlIaUUpRoFU3oA2gWR0CUr4Pbfxc3dX2UKGgGaAloD0MIOzlDcUfNcECUhpRSlGgVTZsBaBZHQJSv2SSvC/J1fZQoaAZoCWgPQwijeQCL/PY+QJSGlFKUaBVL9GgWR0CUsKCZ4Oc2dX2UKGgGaAloD0MIcZF7ujqLcECUhpRSlGgVTXUCaBZHQJS0jRVp9JB1fZQoaAZoCWgPQwh6bTZW4iNjQJSGlFKUaBVN6ANoFkdAlLT176YVqXV9lChoBmgJaA9DCKTeUznt6WBAlIaUUpRoFU3oA2gWR0CUtRJiiItUdX2UKGgGaAloD0MImdnnMYoEckCUhpRSlGgVTe4BaBZHQJS1H3j+7191fZQoaAZoCWgPQwiIDoEjAapxQJSGlFKUaBVNxAJoFkdAlL5kHMUypXV9lChoBmgJaA9DCIeJBil4LXBAlIaUUpRoFU1jAWgWR0CUyhlHSWqtdX2UKGgGaAloD0MITioaaz/LcECUhpRSlGgVTWcBaBZHQJTKKJrLyMF1fZQoaAZoCWgPQwjX3xKAf2dvQJSGlFKUaBVNCwJoFkdAlMuhi5NGmXV9lChoBmgJaA9DCKfOo+I/IHFAlIaUUpRoFU0LAmgWR0CUzgdLQHAzdX2UKGgGaAloD0MIGjbK+s0wbkCUhpRSlGgVTQkCaBZHQJTPH9ZRsM11fZQoaAZoCWgPQwiet7HZkY9wQJSGlFKUaBVNHQJoFkdAlM9jm4iHI3V9lChoBmgJaA9DCAagUbp0C2FAlIaUUpRoFU3oA2gWR0CU6uF85S3tdX2UKGgGaAloD0MIl/+Qfvs0aECUhpRSlGgVTegDaBZHQJTscZuQ6p51fZQoaAZoCWgPQwhyp3Sw/n9BQJSGlFKUaBVLyGgWR0CU7yj1wo9cdX2UKGgGaAloD0MIqWdBKG+UZECUhpRSlGgVTegDaBZHQJTvVo24usd1fZQoaAZoCWgPQwjQs1n1+epwQJSGlFKUaBVNGwFoFkdAlPBClabF0nV9lChoBmgJaA9DCAYRqWmX9GxAlIaUUpRoFU0hAWgWR0CU8JnvDxb0dX2UKGgGaAloD0MIHeVgNgETZECUhpRSlGgVTegDaBZHQJTwsyRB/qh1fZQoaAZoCWgPQwjAdcWM8KVkQJSGlFKUaBVN6ANoFkdAlPFZBC2MKnV9lChoBmgJaA9DCKM6Hcj6JnBAlIaUUpRoFU0AAmgWR0CU8vUT+NtJdX2UKGgGaAloD0MIq7TFNT7qYECUhpRSlGgVTegDaBZHQJTzz5mAbyZ1fZQoaAZoCWgPQwjw4CcOoG1wQJSGlFKUaBVN8AJoFkdAlPTbY5DJEHV9lChoBmgJaA9DCIBHVKguYHBAlIaUUpRoFU2YA2gWR0CU9j2kzoECdX2UKGgGaAloD0MICB9KtCTxcECUhpRSlGgVTU4BaBZHQJT2SFWXC0p1fZQoaAZoCWgPQwi37uapDjdCQJSGlFKUaBVL1WgWR0CU9nS4vvjPdX2UKGgGaAloD0MI6bmFrkTcMUCUhpRSlGgVS8loFkdAlPfmKl54W3V9lChoBmgJaA9DCONxUS0iPEpAlIaUUpRoFUu4aBZHQJT376j32251fZQoaAZoCWgPQwh9lBEXANhtQJSGlFKUaBVNWQFoFkdAlPpc0Ltu1nV9lChoBmgJaA9DCDyFXKnnfG5AlIaUUpRoFU0CAmgWR0CU+s003wTedX2UKGgGaAloD0MINnhflYtVbkCUhpRSlGgVTfgBaBZHQJT83vv0AcV1fZQoaAZoCWgPQwjnj2ltGkRfQJSGlFKUaBVN6ANoFkdAlP/Nx2jfvXV9lChoBmgJaA9DCAPrOH4ou2xAlIaUUpRoFU1vAWgWR0CVAHvNNahYdX2UKGgGaAloD0MIPPn02Ja5b0CUhpRSlGgVTZ8BaBZHQJUBevTw2EV1fZQoaAZoCWgPQwgPYmcK3ZFwQJSGlFKUaBVNPQFoFkdAlQGH9BKL9HV9lChoBmgJaA9DCAN4CySoOnFAlIaUUpRoFU2aAWgWR0CVAq/hVENOdX2UKGgGaAloD0MIXK0Tl6MNckCUhpRSlGgVTTIBaBZHQJUEEMpgCwN1fZQoaAZoCWgPQwi3KR4XVYZwQJSGlFKUaBVNTAFoFkdAlQd+SGJvYXV9lChoBmgJaA9DCLJLVG/NLXFAlIaUUpRoFU3wAWgWR0CVB7JJ5E+gdX2UKGgGaAloD0MId0oH6/88cECUhpRSlGgVTbEBaBZHQJUInd8Aq/d1fZQoaAZoCWgPQwg7U+i8BuhwQJSGlFKUaBVNQwFoFkdAlQqRFNL13HV9lChoBmgJaA9DCEURUrczQG5AlIaUUpRoFU0eAWgWR0CVCwz/IbOvdX2UKGgGaAloD0MILubnhqbbbECUhpRSlGgVTTsBaBZHQJURqqEOAiF1fZQoaAZoCWgPQwi/fLJiOFlxQJSGlFKUaBVNjQJoFkdAlRNMCYCyQnV9lChoBmgJaA9DCMTt0LCYk3BAlIaUUpRoFUv6aBZHQJUXnTc6/7B1fZQoaAZoCWgPQwgzqaENgIdwQJSGlFKUaBVNHwFoFkdAlRoeO801qHV9lChoBmgJaA9DCOWaApkdK25AlIaUUpRoFU0uAmgWR0CVGiJFspG4dX2UKGgGaAloD0MIXi7iO7FLcUCUhpRSlGgVTbkBaBZHQJUcb7yhBZ91ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}