lorenzoscottb's picture
Update README.md
04eda30 verified
|
raw
history blame
2.89 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: bert-base-cased-DreamBank
    results: []
widget:
  - text: >-
      I dreamed that Hannah and Sue and I travelled back in time to meet her
      parents. Weird.
pipeline_tag: text-classification

bert-base-cased-DreamBank

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2697
  • F1: 0.8335
  • Roc Auc: 0.8761
  • Accuracy: 0.6703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 185 0.5983 0.0330 0.5064 0.0162
No log 2.0 370 0.3939 0.6104 0.7317 0.4649
0.4638 3.0 555 0.3227 0.7572 0.8154 0.5568
0.4638 4.0 740 0.2852 0.7902 0.8412 0.5784
0.4638 5.0 925 0.2720 0.7982 0.8382 0.6270
0.1877 6.0 1110 0.2795 0.8144 0.8619 0.6541
0.1877 7.0 1295 0.2575 0.8147 0.8568 0.6541
0.1877 8.0 1480 0.2556 0.8204 0.8630 0.6595
0.0952 9.0 1665 0.2668 0.8321 0.8764 0.6703
0.0952 10.0 1850 0.2697 0.8335 0.8761 0.6703

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.5.1
  • Tokenizers 0.12.1

Cite

Should you use our models in your work, please consider citing us as:

@article{BERTOLINI2024406,
title = {DReAMy: a library for the automatic analysis and annotation of dream reports with multilingual large language models},
journal = {Sleep Medicine},
volume = {115},
pages = {406-407},
year = {2024},
note = {Abstracts from the 17th World Sleep Congress},
issn = {1389-9457},
doi = {https://doi.org/10.1016/j.sleep.2023.11.1092},
url = {https://www.sciencedirect.com/science/article/pii/S1389945723015186},
author = {L. Bertolini and A. Michalak and J. Weeds}
}