import sQUlearn | |
from sQUlearn import Executor, FidelityKernel, ProjectedQuantumKernel | |
# Define a quantum circuit for optimization | |
circuit = sQUlearn.Circuit() | |
# Define a QML model using the sQUlearn library | |
model = sQUlearn.QMLModel(circuit) | |
# Define a fidelity kernel for optimization | |
kernel = FidelityKernel(model) | |
# Define a projected quantum kernel for optimization | |
projected_kernel = ProjectedQuantumKernel(model) | |
# Create an executor for executing QML tasks on real quantum computers or simulators | |
executor = Executor() | |
# Define a function for optimizing the QML model using the executor | |
def optimize_model(): | |
# Train the QNN on a real quantum backend to enhance result accuracy | |
model.train(executor) | |
# Optimize the parameters to effectively counteract systematic errors inherent in the real quantum hardware | |
model.optimize_parameters(executor) | |
# Evaluate the Gram matrix on real quantum computers or a simulator backend with automatic session handling | |
gram_matrix = executor.evaluate_gram_matrix(model) | |
return gram_matrix | |
# Use the optimized model for quantum AI optimization | |
def quantum_ai_optimization(): | |
# Load the pre-trained adapter model | |
from adapters import AutoAdapterModel | |
model = AutoAdapterModel.from_pretrained("undefined") | |
model.load_adapter("DaddyAloha/Bot-2", set_active=True) | |
# Integrate the sQUlearn library with the adapter model | |
quantum_model = sQUlearn.QMLModel(model) | |
# Optimize the quantum model using the executor | |
optimized_gram_matrix = optimize_model() | |
# Use the optimized quantum model for AI optimization | |
#... |