DocumentCogito / README.md
Daemontatox's picture
Adding Evaluation Results (#1)
9bdbfd8 verified
---
base_model: unsloth/Llama-3.2-11B-Vision-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- mllama
license: apache-2.0
language:
- en
model-index:
- name: DocumentCogito
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 50.64
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.79
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 16.24
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.84
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.6
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.14
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
---
# **unsloth/Llama-3.2-11B-Vision-Instruct (Fine-Tuned)**
## **Model Overview**
This model, fine-tuned from the `unsloth/Llama-3.2-11B-Vision-Instruct` base, is optimized for vision-language tasks with enhanced instruction-following capabilities. Fine-tuning was completed 2x faster using the [Unsloth](https://github.com/unslothai/unsloth) framework combined with Hugging Face's TRL library, ensuring efficient training while maintaining high performance.
## **Key Information**
- **Developed by:** Daemontatox
- **Base Model:** `unsloth/Llama-3.2-11B-Vision-Instruct`
- **License:** Apache-2.0
- **Language:** English (`en`)
- **Frameworks Used:** Hugging Face Transformers, Unsloth, and TRL
## **Performance and Use Cases**
This model is ideal for applications involving:
- Vision-based text generation and description tasks
- Instruction-following in multimodal contexts
- General-purpose text generation with enhanced reasoning
### **Features**
- **2x Faster Training:** Leveraging the Unsloth framework for accelerated fine-tuning.
- **Multimodal Capabilities:** Enhanced to handle vision-language interactions.
- **Instruction Optimization:** Tailored for improved comprehension and execution of instructions.
## **How to Use**
### **Inference Example (Hugging Face Transformers)**
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Daemontatox/finetuned-llama-3.2-vision-instruct")
model = AutoModelForCausalLM.from_pretrained("Daemontatox/finetuned-llama-3.2-vision-instruct")
input_text = "Describe the image showing a sunset over mountains."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__DocumentCogito-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FDocumentCogito&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 24.21|
|IFEval (0-Shot) | 50.64|
|BBH (3-Shot) | 29.79|
|MATH Lvl 5 (4-Shot)| 16.24|
|GPQA (0-shot) | 8.84|
|MuSR (0-shot) | 8.60|
|MMLU-PRO (5-shot) | 31.14|