DaiShiResearch's picture
Update README.md
15a6422 verified
---
license: apache-2.0
datasets:
- imagenet-1k
- coco
metrics:
- mean_average_precision
pipeline_tag: object-detection
tags:
- vision
language:
- en
library_name: pytorch
---
# TransNeXt
Official Model release
for ["TransNeXt: Robust Foveal Visual Perception for Vision Transformers"](https://arxiv.org/pdf/2311.17132.pdf) [CVPR 2024]
.
## Model Details
- **Code:** https://github.com/DaiShiResearch/TransNeXt
- **Paper:** [TransNeXt: Robust Foveal Visual Perception for Vision Transformers](https://arxiv.org/abs/2311.17132)
- **Author:** [Dai Shi](https://github.com/DaiShiResearch)
- **Email:** [email protected]
## Methods
#### Pixel-focused attention (Left) & aggregated attention (Right):
![pixel-focused_attention](https://github.com/DaiShiResearch/TransNeXt/blob/main/figures/pixel-focused_attention.jpg?raw=true "pixel-focused_attention")
#### Convolutional GLU (First on the right):
![Convolutional GLU](https://github.com/DaiShiResearch/TransNeXt/blob/main/figures/feedforward_variants.jpg?raw=true "Convolutional GLU")
## Results
#### Image Classification, Detection and Segmentation:
![experiment_figure](https://github.com/DaiShiResearch/TransNeXt/blob/main/figures/experiment_figure.jpg?raw=true "experiment_figure")
#### Attention Visualization:
![foveal_peripheral_vision](https://github.com/DaiShiResearch/TransNeXt/blob/main/figures/foveal_peripheral_vision.jpg?raw=true "foveal_peripheral_vision")
## Model Zoo
### Image Classification
***Classification code & weights & configs & training logs are >>>[here](https://github.com/DaiShiResearch/TransNeXt/tree/main/classification/ )<<<.***
**ImageNet-1K 224x224 pre-trained models:**
| Model | #Params | #FLOPs |IN-1K | IN-A | IN-C&#8595; |IN-R|Sketch|IN-V2|Download |Config| Log |
|:---:|:---:|:---:|:---:| :---:|:---:|:---:|:---:| :---:|:---:|:---:|:---:|
| TransNeXt-Micro|12.8M|2.7G| 82.5 | 29.9 | 50.8|45.8|33.0|72.6|[model](https://huggingface.co/DaiShiResearch/transnext-micro-224-1k/resolve/main/transnext_micro_224_1k.pth?download=true) |[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/classification/configs/transnext_micro.py)|[log](https://huggingface.co/DaiShiResearch/transnext-micro-224-1k/raw/main/transnext_micro_224_1k.txt) |
| TransNeXt-Tiny |28.2M|5.7G| 84.0| 39.9| 46.5|49.6|37.6|73.8|[model](https://huggingface.co/DaiShiResearch/transnext-tiny-224-1k/resolve/main/transnext_tiny_224_1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/classification/configs/transnext_tiny.py)|[log](https://huggingface.co/DaiShiResearch/transnext-tiny-224-1k/raw/main/transnext_tiny_224_1k.txt)|
| TransNeXt-Small |49.7M|10.3G| 84.7| 47.1| 43.9|52.5| 39.7|74.8 |[model](https://huggingface.co/DaiShiResearch/transnext-small-224-1k/resolve/main/transnext_small_224_1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/classification/configs/transnext_small.py)|[log](https://huggingface.co/DaiShiResearch/transnext-small-224-1k/raw/main/transnext_small_224_1k.txt)|
| TransNeXt-Base |89.7M|18.4G| 84.8| 50.6|43.5|53.9|41.4|75.1| [model](https://huggingface.co/DaiShiResearch/transnext-base-224-1k/resolve/main/transnext_base_224_1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/classification/configs/transnext_base.py)|[log](https://huggingface.co/DaiShiResearch/transnext-base-224-1k/raw/main/transnext_base_224_1k.txt)|
**ImageNet-1K 384x384 fine-tuned models:**
| Model | #Params | #FLOPs |IN-1K | IN-A |IN-R|Sketch|IN-V2| Download |Config|
|:---:|:---:|:---:|:---:| :---:|:---:|:---:| :---:|:---:|:---:|
| TransNeXt-Small |49.7M|32.1G| 86.0| 58.3|56.4|43.2|76.8| [model](https://huggingface.co/DaiShiResearch/transnext-small-384-1k-ft-1k/resolve/main/transnext_small_384_1k_ft_1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/classification/configs/finetune/transnext_small_384_ft.py)|
| TransNeXt-Base |89.7M|56.3G| 86.2| 61.6|57.7|44.7|77.0| [model](https://huggingface.co/DaiShiResearch/transnext-base-384-1k-ft-1k/resolve/main/transnext_base_384_1k_ft_1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/classification/configs/finetune/transnext_base_384_ft.py)|
**ImageNet-1K 256x256 pre-trained model fully utilizing aggregated attention at all stages:**
*(See Table.9 in Appendix D.6 for details)*
| Model |Token mixer| #Params | #FLOPs |IN-1K |Download |Config| Log |
|:---:|:---:|:---:|:---:| :---:|:---:|:---:|:---:|
|TransNeXt-Micro|**A-A-A-A**|13.1M|3.3G| 82.6 |[model](https://huggingface.co/DaiShiResearch/transnext-micro-AAAA-256-1k/resolve/main/transnext_micro_AAAA_256_1k.pth?download=true) |[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/classification/configs/transnext_micro_AAAA_256.py)|[log](https://huggingface.co/DaiShiResearch/transnext-micro-AAAA-256-1k/blob/main/transnext_micro_AAAA_256_1k.txt) |
### Object Detection
***Object detection code & weights & configs & training logs are >>>[here](https://github.com/DaiShiResearch/TransNeXt/tree/main/detection/ )<<<.***
**COCO object detection and instance segmentation results using the Mask R-CNN method:**
| Backbone | Pretrained Model| Lr Schd| box mAP | mask mAP | #Params | Download |Config| Log |
|:---:|:---:|:---:|:---:| :---:|:---:|:---:|:---:|:---:|
| TransNeXt-Tiny | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-tiny-224-1k/resolve/main/transnext_tiny_224_1k.pth?download=true) |1x|49.9|44.6|47.9M|[model](https://huggingface.co/DaiShiResearch/maskrcnn-transnext-tiny-coco/resolve/main/mask_rcnn_transnext_tiny_fpn_1x_coco_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/detection/maskrcnn/configs/mask_rcnn_transnext_tiny_fpn_1x_coco.py)|[log](https://huggingface.co/DaiShiResearch/maskrcnn-transnext-tiny-coco/raw/main/mask_rcnn_transnext_tiny_fpn_1x_coco_in1k.log.json)|
| TransNeXt-Small | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-small-224-1k/resolve/main/transnext_small_224_1k.pth?download=true) |1x|51.1|45.5|69.3M|[model](https://huggingface.co/DaiShiResearch/maskrcnn-transnext-small-coco/resolve/main/mask_rcnn_transnext_small_fpn_1x_coco_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/detection/maskrcnn/configs/mask_rcnn_transnext_small_fpn_1x_coco.py)|[log](https://huggingface.co/DaiShiResearch/maskrcnn-transnext-small-coco/raw/main/mask_rcnn_transnext_small_fpn_1x_coco_in1k.log.json)|
| TransNeXt-Base | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-base-224-1k/resolve/main/transnext_base_224_1k.pth?download=true) |1x|51.7|45.9|109.2M|[model](https://huggingface.co/DaiShiResearch/maskrcnn-transnext-base-coco/resolve/main/mask_rcnn_transnext_base_fpn_1x_coco_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/detection/maskrcnn/configs/mask_rcnn_transnext_base_fpn_1x_coco.py)|[log](https://huggingface.co/DaiShiResearch/maskrcnn-transnext-base-coco/raw/main/mask_rcnn_transnext_base_fpn_1x_coco_in1k.log.json)|
**COCO object detection results using the DINO method:**
| Backbone | Pretrained Model| scales | epochs | box mAP | #Params | Download |Config| Log |
|:---:|:---:|:---:|:---:| :---:|:---:|:---:|:---:|:---:|
| TransNeXt-Tiny | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-tiny-224-1k/resolve/main/transnext_tiny_224_1k.pth?download=true)|4scale | 12|55.1|47.8M|[model](https://huggingface.co/DaiShiResearch/dino-4scale-transnext-tiny-coco/resolve/main/dino_4scale_transnext_tiny_12e_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/detection/dino/configs/dino-4scale_transnext_tiny-12e_coco.py)|[log](https://huggingface.co/DaiShiResearch/dino-4scale-transnext-tiny-coco/raw/main/dino_4scale_transnext_tiny_12e_in1k.json)|
| TransNeXt-Tiny | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-tiny-224-1k/resolve/main/transnext_tiny_224_1k.pth?download=true)|5scale | 12|55.7|48.1M|[model](https://huggingface.co/DaiShiResearch/dino-5scale-transnext-tiny-coco/resolve/main/dino_5scale_transnext_tiny_12e_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/detection/dino/configs/dino-5scale_transnext_tiny-12e_coco.py)|[log](https://huggingface.co/DaiShiResearch/dino-5scale-transnext-tiny-coco/raw/main/dino_5scale_transnext_tiny_12e_in1k.json)|
| TransNeXt-Small | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-small-224-1k/resolve/main/transnext_small_224_1k.pth?download=true)|5scale | 12|56.6|69.6M|[model](https://huggingface.co/DaiShiResearch/dino-5scale-transnext-small-coco/resolve/main/dino_5scale_transnext_small_12e_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/detection/dino/configs/dino-5scale_transnext_small-12e_coco.py)|[log](https://huggingface.co/DaiShiResearch/dino-5scale-transnext-small-coco/raw/main/dino_5scale_transnext_small_12e_in1k.json)|
| TransNeXt-Base | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-base-224-1k/resolve/main/transnext_base_224_1k.pth?download=true)|5scale | 12|57.1|110M|[model](https://huggingface.co/DaiShiResearch/dino-5scale-transnext-base-coco/resolve/main/dino_5scale_transnext_base_12e_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/detection/dino/configs/dino-5scale_transnext_base-12e_coco.py)|[log](https://huggingface.co/DaiShiResearch/dino-5scale-transnext-base-coco/raw/main/dino_5scale_transnext_base_12e_in1k.json)|
### Semantic Segmentation
***Semantic segmentation code & weights & configs & training logs are >>>[here](https://github.com/DaiShiResearch/TransNeXt/tree/main/segmentation/ )<<<.***
**ADE20K semantic segmentation results using the UPerNet method:**
| Backbone | Pretrained Model| Crop Size |Lr Schd| mIoU|mIoU (ms+flip)| #Params | Download |Config| Log |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| TransNeXt-Tiny | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-tiny-224-1k/resolve/main/transnext_tiny_224_1k.pth?download=true)|512x512|160K|51.1|51.5/51.7|59M|[model](https://huggingface.co/DaiShiResearch/upernet-transnext-tiny-ade/resolve/main/upernet_transnext_tiny_512x512_160k_ade20k_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/segmentation/upernet/configs/upernet_transnext_tiny_512x512_160k_ade20k_ss.py)|[log](https://huggingface.co/DaiShiResearch/upernet-transnext-tiny-ade/blob/main/upernet_transnext_tiny_512x512_160k_ade20k_ss.log.json)|
| TransNeXt-Small | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-small-224-1k/resolve/main/transnext_small_224_1k.pth?download=true)|512x512|160K|52.2|52.5/52.8|80M|[model](https://huggingface.co/DaiShiResearch/upernet-transnext-small-ade/resolve/main/upernet_transnext_small_512x512_160k_ade20k_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/segmentation/upernet/configs/upernet_transnext_small_512x512_160k_ade20k_ss.py)|[log](https://huggingface.co/DaiShiResearch/upernet-transnext-small-ade/blob/main/upernet_transnext_small_512x512_160k_ade20k_ss.log.json)|
| TransNeXt-Base | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-base-224-1k/resolve/main/transnext_base_224_1k.pth?download=true)|512x512|160K|53.0|53.5/53.7|121M|[model](https://huggingface.co/DaiShiResearch/upernet-transnext-base-ade/resolve/main/upernet_transnext_base_512x512_160k_ade20k_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/segmentation/upernet/configs/upernet_transnext_base_512x512_160k_ade20k_ss.py)|[log](https://huggingface.co/DaiShiResearch/upernet-transnext-base-ade/blob/main/upernet_transnext_base_512x512_160k_ade20k_ss.log.json)|
* In the context of multi-scale evaluation, TransNeXt reports test results under two distinct scenarios: **interpolation** and **extrapolation** of relative position bias.
**ADE20K semantic segmentation results using the Mask2Former method:**
| Backbone | Pretrained Model| Crop Size |Lr Schd| mIoU| #Params | Download |Config| Log |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| TransNeXt-Tiny | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-tiny-224-1k/resolve/main/transnext_tiny_224_1k.pth?download=true)|512x512|160K|53.4|47.5M|[model](https://huggingface.co/DaiShiResearch/mask2former-transnext-tiny-ade/resolve/main/mask2former_transnext_tiny_512x512_160k_ade20k_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/segmentation/mask2former/configs/mask2former_transnext_tiny_160k_ade20k-512x512.py)|[log](https://huggingface.co/DaiShiResearch/mask2former-transnext-tiny-ade/raw/main/mask2former_transnext_tiny_512x512_160k_ade20k_in1k.json)|
| TransNeXt-Small | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-small-224-1k/resolve/main/transnext_small_224_1k.pth?download=true)|512x512|160K|54.1|69.0M|[model](https://huggingface.co/DaiShiResearch/mask2former-transnext-small-ade/resolve/main/mask2former_transnext_small_512x512_160k_ade20k_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/segmentation/mask2former/configs/mask2former_transnext_small_160k_ade20k-512x512.py)|[log](https://huggingface.co/DaiShiResearch/mask2former-transnext-small-ade/raw/main/mask2former_transnext_small_512x512_160k_ade20k_in1k.json)|
| TransNeXt-Base | [ImageNet-1K](https://huggingface.co/DaiShiResearch/transnext-base-224-1k/resolve/main/transnext_base_224_1k.pth?download=true)|512x512|160K|54.7|109M|[model](https://huggingface.co/DaiShiResearch/mask2former-transnext-base-ade/resolve/main/mask2former_transnext_base_512x512_160k_ade20k_in1k.pth?download=true)|[config](https://github.com/DaiShiResearch/TransNeXt/tree/main/segmentation/mask2former/configs/mask2former_transnext_base_160k_ade20k-512x512.py)|[log](https://huggingface.co/DaiShiResearch/mask2former-transnext-base-ade/raw/main/mask2former_transnext_base_512x512_160k_ade20k_in1k.json)|
## Citation
If you find our work helpful, please consider citing the following bibtex. We would greatly appreciate a star for this
project.
@InProceedings{shi2023transnext,
author = {Dai Shi},
title = {TransNeXt: Robust Foveal Visual Perception for Vision Transformers},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {17773-17783}
}