estudiante_Swin3D_profesor_MViT_kl_RLVS

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0952
  • Accuracy: 0.9803
  • F1: 0.9803
  • Precision: 0.9804
  • Recall: 0.9803
  • Roc Auc: 0.9983

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 560
  • training_steps: 5600
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Roc Auc
0.4009 1.0214 280 0.0800 0.9817 0.9817 0.9818 0.9817 0.9915
0.2826 3.0143 560 0.0801 0.9764 0.9764 0.9766 0.9764 0.9952
0.115 5.0071 840 0.0997 0.9738 0.9738 0.9747 0.9738 0.9960
0.0979 6.0286 1120 0.0904 0.9791 0.9791 0.9791 0.9791 0.9945
0.0735 8.0214 1400 0.0633 0.9843 0.9843 0.9843 0.9843 0.9966
0.0856 10.0143 1680 0.0721 0.9843 0.9843 0.9843 0.9843 0.9966
0.0532 12.0071 1960 0.0573 0.9869 0.9869 0.9869 0.9869 0.9979
0.103 13.0286 2240 0.0566 0.9895 0.9895 0.9895 0.9895 0.9987
0.0345 15.0214 2520 0.1021 0.9817 0.9817 0.9818 0.9817 0.9990
0.0579 17.0143 2800 0.0632 0.9869 0.9869 0.9869 0.9869 0.9987
0.035 19.0071 3080 0.1293 0.9791 0.9791 0.9793 0.9791 0.9949
0.0535 20.0286 3360 0.0768 0.9791 0.9791 0.9795 0.9791 0.9986
0.0802 22.0214 3640 0.0601 0.9869 0.9869 0.9869 0.9869 0.9986

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.0.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
50
Safetensors
Model size
29.8M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.