metadata
license: apache-2.0
base_model: jonatasgrosman/wav2vec2-xls-r-1b-french
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: xls_1b_decoding_fr_decoding_test_iter
results: []
xls_1b_decoding_fr_decoding_test_iter
This model is a fine-tuned version of jonatasgrosman/wav2vec2-xls-r-1b-french on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7122
- Wer: 0.4249
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 40
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.2189 | 0.6452 | 40 | 0.6929 | 0.6997 |
0.6612 | 1.2903 | 80 | 0.5628 | 0.5886 |
0.5586 | 1.9355 | 120 | 0.4900 | 0.5202 |
0.4528 | 2.5806 | 160 | 0.4671 | 0.4960 |
0.3799 | 3.2258 | 200 | 0.4555 | 0.4812 |
0.3638 | 3.8710 | 240 | 0.4534 | 0.4686 |
0.3035 | 4.5161 | 280 | 0.4709 | 0.4575 |
0.2905 | 5.1613 | 320 | 0.4640 | 0.4551 |
0.2599 | 5.8065 | 360 | 0.4629 | 0.4444 |
0.2095 | 6.4516 | 400 | 0.4966 | 0.4598 |
0.2206 | 7.0968 | 440 | 0.4958 | 0.4496 |
0.1921 | 7.7419 | 480 | 0.4944 | 0.4389 |
0.1946 | 8.3871 | 520 | 0.5035 | 0.4542 |
0.1629 | 9.0323 | 560 | 0.4978 | 0.4430 |
0.15 | 9.6774 | 600 | 0.5143 | 0.4449 |
0.1402 | 10.3226 | 640 | 0.5550 | 0.4351 |
0.1351 | 10.9677 | 680 | 0.5548 | 0.4319 |
0.1212 | 11.6129 | 720 | 0.5455 | 0.4291 |
0.1243 | 12.2581 | 760 | 0.5773 | 0.4300 |
0.1035 | 12.9032 | 800 | 0.5636 | 0.4407 |
0.1103 | 13.5484 | 840 | 0.6062 | 0.4245 |
0.0879 | 14.1935 | 880 | 0.5990 | 0.4384 |
0.0947 | 14.8387 | 920 | 0.5905 | 0.4426 |
0.0804 | 15.4839 | 960 | 0.6118 | 0.4412 |
0.0921 | 16.1290 | 1000 | 0.6040 | 0.4435 |
0.0816 | 16.7742 | 1040 | 0.6188 | 0.4170 |
0.0715 | 17.4194 | 1080 | 0.6463 | 0.4268 |
0.0799 | 18.0645 | 1120 | 0.6326 | 0.4351 |
0.0631 | 18.7097 | 1160 | 0.6526 | 0.4314 |
0.0643 | 19.3548 | 1200 | 0.6502 | 0.4254 |
0.0537 | 20.0 | 1240 | 0.6922 | 0.4310 |
0.0628 | 20.6452 | 1280 | 0.6778 | 0.4286 |
0.0527 | 21.2903 | 1320 | 0.6765 | 0.4324 |
0.0566 | 21.9355 | 1360 | 0.6843 | 0.4249 |
0.0533 | 22.5806 | 1400 | 0.7073 | 0.4277 |
0.052 | 23.2258 | 1440 | 0.7048 | 0.4296 |
0.0473 | 23.8710 | 1480 | 0.6886 | 0.4226 |
0.0502 | 24.5161 | 1520 | 0.6940 | 0.4258 |
0.0496 | 25.1613 | 1560 | 0.6839 | 0.4240 |
0.0435 | 25.8065 | 1600 | 0.6931 | 0.4207 |
0.0394 | 26.4516 | 1640 | 0.7002 | 0.4235 |
0.047 | 27.0968 | 1680 | 0.7086 | 0.4212 |
0.0439 | 27.7419 | 1720 | 0.7124 | 0.4272 |
0.0375 | 28.3871 | 1760 | 0.7166 | 0.4245 |
0.0444 | 29.0323 | 1800 | 0.7149 | 0.4240 |
0.0421 | 29.6774 | 1840 | 0.7122 | 0.4249 |
Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.3.1+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1