DandinPower's picture
End of training
7217903 verified
metadata
language:
  - en
license: mit
base_model: microsoft/deberta-v2-xlarge
tags:
  - nycu-112-2-datamining-hw2
  - generated_from_trainer
datasets:
  - DandinPower/review_onlytitleandtext
metrics:
  - accuracy
model-index:
  - name: deberta-v2-xlarge-otat
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: DandinPower/review_onlytitleandtext
          type: DandinPower/review_onlytitleandtext
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.20114285714285715

deberta-v2-xlarge-otat

This model is a fine-tuned version of microsoft/deberta-v2-xlarge on the DandinPower/review_onlytitleandtext dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6316
  • Accuracy: 0.2011
  • Macro F1: 0.0670

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
1.1994 0.14 500 1.6893 0.4029 0.3240
1.6344 0.29 1000 1.6403 0.2011 0.0670
1.6413 0.43 1500 1.6270 0.2 0.0667
1.6326 0.57 2000 1.6375 0.1971 0.0659
1.6128 0.71 2500 1.6604 0.2011 0.0670
1.6213 0.86 3000 1.6161 0.2 0.0667
1.6199 1.0 3500 1.6132 0.2017 0.0671
1.6177 1.14 4000 1.6142 0.2011 0.0670
1.6183 1.29 4500 1.6213 0.2 0.0667
1.6211 1.43 5000 1.6136 0.1971 0.0659
1.6145 1.57 5500 1.6169 0.1971 0.0659
1.6187 1.71 6000 1.6160 0.2011 0.0670
1.6174 1.86 6500 1.6146 0.2 0.0667
1.6164 2.0 7000 1.6181 0.2 0.0667
1.6184 2.14 7500 1.6109 0.1971 0.0659
1.6152 2.29 8000 1.6189 0.2 0.0667
1.6175 2.43 8500 1.6146 0.1971 0.0659
1.6134 2.57 9000 1.6160 0.1971 0.0659
1.6144 2.71 9500 1.6167 0.2011 0.0670
1.6141 2.86 10000 1.6106 0.2017 0.0671
1.6128 3.0 10500 1.6139 0.1971 0.0659
1.6179 3.14 11000 1.6112 0.2 0.0667
1.6096 3.29 11500 1.6127 0.2 0.0667
1.6132 3.43 12000 1.6135 0.2011 0.0670
1.6053 3.57 12500 1.6186 0.2 0.0667
1.6049 3.71 13000 1.6277 0.2011 0.0670
1.6044 3.86 13500 1.6271 0.2011 0.0670
1.6017 4.0 14000 1.6275 0.2011 0.0670
1.608 4.14 14500 1.6192 0.2011 0.0670
1.6075 4.29 15000 1.6259 0.2011 0.0670
1.601 4.43 15500 1.6267 0.2011 0.0670
1.6086 4.57 16000 1.6339 0.2011 0.0670
1.5955 4.71 16500 1.6340 0.2011 0.0670
1.6013 4.86 17000 1.6322 0.2011 0.0670
1.5976 5.0 17500 1.6316 0.2011 0.0670

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2