|
--- |
|
language: |
|
- en |
|
license: mit |
|
base_model: microsoft/deberta-v3-xsmall |
|
tags: |
|
- nycu-112-2-datamining-hw2 |
|
- generated_from_trainer |
|
datasets: |
|
- DandinPower/review_cleanonlytitleandtext |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: deberta-v3-xsmall-cotat-recommened-hp |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: DandinPower/review_cleanonlytitleandtext |
|
type: DandinPower/review_cleanonlytitleandtext |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6262857142857143 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-xsmall-cotat-recommened-hp |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the DandinPower/review_cleanonlytitleandtext dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8783 |
|
- Accuracy: 0.6263 |
|
- Macro F1: 0.6285 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4.5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:| |
|
| 1.61 | 0.4571 | 100 | 1.6076 | 0.22 | 0.1631 | |
|
| 1.5063 | 0.9143 | 200 | 1.2854 | 0.4094 | 0.2942 | |
|
| 1.2016 | 1.3714 | 300 | 1.0481 | 0.5529 | 0.5311 | |
|
| 1.0219 | 1.8286 | 400 | 0.9338 | 0.6093 | 0.6020 | |
|
| 0.9362 | 2.2857 | 500 | 0.8919 | 0.6261 | 0.6239 | |
|
| 0.9097 | 2.7429 | 600 | 0.8783 | 0.6263 | 0.6285 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|