SQLMaster

A minimum of 10 GB VRAM is required.

Colab Example

https://colab.research.google.com/drive/1Nvwie-klMNPPWI4o7Nae4l5spxEX1PaD?usp=sharing

Install Prerequisite

!pip install peft
!pip install transformers
!pip install bitsandbytes
!pip install accelerate

Login Using Huggingface Token

# You need a huggingface token that can access llama2
from huggingface_hub import notebook_login
notebook_login()

Download Model

import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

peft_model_id = "Danjie/SQLMaster_13b"
config = PeftConfig.from_pretrained(peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map='auto', quantization_config=bnb_config)
model.resize_token_embeddings(len(tokenizer) + 1)

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)

Inference

def create_sql_query(question: str, context: str) -> str:
    input = "Question: " + question + "\nContext:" + context + "\nAnswer"
    
    # Encode and move tensor into cuda if applicable.
    encoded_input = tokenizer(input, return_tensors='pt')
    encoded_input = {k: v.to(device) for k, v in encoded_input.items()}

    output = model.generate(**encoded_input, max_new_tokens=256)
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    response = response[len(input):]
    return response

Example

create_sql_query("What is the highest age of users with name Danjie", "CREATE TABLE user (age INTEGER, name STRING)")
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .