See axolotl config
axolotl version: 0.8.0
base_model: Dans-DiscountModels/7b-m-dans-personalityengine-v1.2.1-rc-2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code:
# wandb configuration
wandb_project: 7b-m-dans-optimizersweeps
wandb_watch:
wandb_run_id: repremover-1-1-adamw_8bit-hi-lr
wandb_log_model:
# push checkpoints to hub
hub_model_id: Dans-DiscountModels/7b-m-dans-optimizersweeps-repremover-1-adamw_8bit-hi-lr
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy: "every_save"
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true
# where to save the finished model to
output_dir: ./7b-m-dans-optimizersweeps
# where to save the dataset to
dataset_prepared_path: ./7b-m-dans-optimizersweeps-data
save_safetensors: true
# dataset settings (local or huggingface repo)
datasets:
- path: Dans-DiscountModels/pretokenization-test-3
ds_type: parquet
type:
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
adapter:
lora_model_dir:
val_set_size: 0.01
sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
gradient_checkpointing: true
# gradient_checkpointing_kwargs:
# use_reentrant: false
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_8bit
lr_scheduler: rex
learning_rate: 0.0000003
cosine_min_lr_ratio:
# weight_decay: 0.03
max_grad_norm: 0.001
train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: false
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: false
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 24
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 1
save_total_limit: 2
debug: false
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
special_tokens:
7b-m-dans-optimizersweeps-repremover-1-adamw_8bit-hi-lr
This model is a fine-tuned version of Dans-DiscountModels/7b-m-dans-personalityengine-v1.2.1-rc-2 on the Dans-DiscountModels/pretokenization-test-3 dataset. It achieves the following results on the evaluation set:
- Loss: 2.0812
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 41
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0376 | 0.0072 | 1 | 2.1458 |
2.2659 | 0.0432 | 6 | 2.1209 |
2.3074 | 0.0863 | 12 | 2.1568 |
2.1839 | 0.1295 | 18 | 2.1178 |
2.2335 | 0.1727 | 24 | 2.1278 |
2.0533 | 0.2158 | 30 | 2.1453 |
2.1303 | 0.2590 | 36 | 2.1186 |
2.0293 | 0.3022 | 42 | 2.1112 |
2.0811 | 0.3453 | 48 | 2.1280 |
2.153 | 0.3885 | 54 | 2.1250 |
2.0473 | 0.4317 | 60 | 2.1078 |
2.0426 | 0.4748 | 66 | 2.1277 |
2.209 | 0.5180 | 72 | 2.1133 |
2.1013 | 0.5612 | 78 | 2.1157 |
2.0229 | 0.6043 | 84 | 2.1352 |
2.1413 | 0.6475 | 90 | 2.1180 |
2.0923 | 0.6906 | 96 | 2.1071 |
2.1078 | 0.7338 | 102 | 2.1242 |
2.0733 | 0.7770 | 108 | 2.1227 |
2.0238 | 0.8201 | 114 | 2.1017 |
2.024 | 0.8633 | 120 | 2.1126 |
1.994 | 0.9065 | 126 | 2.1119 |
2.1519 | 0.9496 | 132 | 2.1006 |
1.9927 | 0.9928 | 138 | 2.1062 |
2.0803 | 1.0360 | 144 | 2.1173 |
1.952 | 1.0791 | 150 | 2.0989 |
2.1018 | 1.1223 | 156 | 2.1217 |
2.0171 | 1.1655 | 162 | 2.1329 |
2.0129 | 1.2086 | 168 | 2.1192 |
2.0033 | 1.2518 | 174 | 2.1136 |
1.9939 | 1.2950 | 180 | 2.1248 |
2.0664 | 1.3381 | 186 | 2.1177 |
2.0827 | 1.3813 | 192 | 2.1197 |
2.1274 | 1.4245 | 198 | 2.1206 |
2.0201 | 1.4676 | 204 | 2.1206 |
2.0762 | 1.5108 | 210 | 2.1165 |
1.9231 | 1.5540 | 216 | 2.1042 |
2.074 | 1.5971 | 222 | 2.1143 |
2.019 | 1.6403 | 228 | 2.1091 |
1.9956 | 1.6835 | 234 | 2.1073 |
2.064 | 1.7266 | 240 | 2.1192 |
2.048 | 1.7698 | 246 | 2.1023 |
1.993 | 1.8129 | 252 | 2.1179 |
2.0191 | 1.8561 | 258 | 2.1245 |
2.0852 | 1.8993 | 264 | 2.1124 |
2.0585 | 1.9424 | 270 | 2.0788 |
2.089 | 1.9856 | 276 | 2.1101 |
2.0415 | 2.0288 | 282 | 2.1167 |
2.032 | 2.0719 | 288 | 2.1073 |
2.1109 | 2.1151 | 294 | 2.0981 |
2.0388 | 2.1583 | 300 | 2.1112 |
1.979 | 2.2014 | 306 | 2.1178 |
2.0118 | 2.2446 | 312 | 2.0969 |
2.0631 | 2.2878 | 318 | 2.1222 |
2.0327 | 2.3309 | 324 | 2.1241 |
2.0413 | 2.3741 | 330 | 2.1050 |
2.0246 | 2.4173 | 336 | 2.0957 |
2.075 | 2.4604 | 342 | 2.1092 |
2.017 | 2.5036 | 348 | 2.0986 |
2.0906 | 2.5468 | 354 | 2.1255 |
2.0623 | 2.5899 | 360 | 2.1110 |
2.0605 | 2.6331 | 366 | 2.0942 |
2.0294 | 2.6763 | 372 | 2.1022 |
1.9559 | 2.7194 | 378 | 2.0966 |
2.0122 | 2.7626 | 384 | 2.0889 |
2.0949 | 2.8058 | 390 | 2.1257 |
2.0604 | 2.8489 | 396 | 2.0881 |
2.0941 | 2.8921 | 402 | 2.1201 |
1.9942 | 2.9353 | 408 | 2.1253 |
1.969 | 2.9784 | 414 | 2.0812 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support