|
|
|
|
|
|
|
|
|
#include "clip.h" |
|
#include "ggml.h" |
|
#include "ggml-cpp.h" |
|
#include "ggml-cpu.h" |
|
#include "ggml-alloc.h" |
|
#include "ggml-backend.h" |
|
#include "gguf.h" |
|
|
|
#ifdef GGML_USE_CUDA |
|
#include "ggml-cuda.h" |
|
#endif |
|
#ifdef GGML_USE_METAL |
|
#include "ggml-metal.h" |
|
#endif |
|
#ifdef GGML_USE_VULKAN |
|
#include "ggml-vulkan.h" |
|
#endif |
|
|
|
#define STB_IMAGE_IMPLEMENTATION |
|
#include "stb_image.h" |
|
|
|
#define STB_IMAGE_RESIZE_IMPLEMENTATION |
|
#include "stb_image_resize.h" |
|
|
|
#include <cassert> |
|
#include <cmath> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <fstream> |
|
#include <map> |
|
#include <regex> |
|
#include <stdexcept> |
|
#include <unordered_set> |
|
#include <vector> |
|
#include <sstream> |
|
#include <cinttypes> |
|
#include <limits> |
|
|
|
#if defined(LLAVA_LOG_OFF) |
|
# define LOG_INF(...) |
|
# define LOG_WRN(...) |
|
# define LOG_ERR(...) |
|
# define LOG_DBG(...) |
|
#else |
|
# define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0) |
|
# define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0) |
|
# define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0) |
|
# define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0) |
|
#endif |
|
|
|
|
|
|
|
|
|
struct clip_image_u8 { |
|
int nx; |
|
int ny; |
|
|
|
std::vector<uint8_t> buf; |
|
}; |
|
|
|
|
|
|
|
struct clip_image_f32 { |
|
int nx; |
|
int ny; |
|
|
|
std::vector<float> buf; |
|
}; |
|
|
|
static std::string format(const char * fmt, ...) { |
|
va_list ap; |
|
va_list ap2; |
|
va_start(ap, fmt); |
|
va_copy(ap2, ap); |
|
int size = vsnprintf(NULL, 0, fmt, ap); |
|
GGML_ASSERT(size >= 0 && size < INT_MAX); |
|
std::vector<char> buf(size + 1); |
|
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); |
|
GGML_ASSERT(size2 == size); |
|
va_end(ap2); |
|
va_end(ap); |
|
return std::string(buf.data(), buf.size()); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
#define KEY_FTYPE "general.file_type" |
|
#define KEY_NAME "general.name" |
|
#define KEY_DESCRIPTION "general.description" |
|
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder" |
|
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder" |
|
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector" |
|
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector" |
|
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector" |
|
#define KEY_MINICPMV_VERSION "clip.minicpmv_version" |
|
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger" |
|
#define KEY_USE_GELU "clip.use_gelu" |
|
#define KEY_USE_SILU "clip.use_silu" |
|
#define KEY_N_EMBD "clip.%s.embedding_length" |
|
#define KEY_N_FF "clip.%s.feed_forward_length" |
|
#define KEY_N_BLOCK "clip.%s.block_count" |
|
#define KEY_N_HEAD "clip.%s.attention.head_count" |
|
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon" |
|
#define KEY_PROJ_DIM "clip.%s.projection_dim" |
|
#define KEY_TOKENS "tokenizer.ggml.tokens" |
|
#define KEY_N_POSITIONS "clip.text.context_length" |
|
#define KEY_IMAGE_SIZE "clip.vision.image_size" |
|
#define KEY_PATCH_SIZE "clip.vision.patch_size" |
|
#define KEY_IMAGE_MEAN "clip.vision.image_mean" |
|
#define KEY_IMAGE_STD "clip.vision.image_std" |
|
#define KEY_PROJ_TYPE "clip.projector_type" |
|
#define KEY_FEATURE_LAYER "clip.vision.feature_layer" |
|
|
|
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type" |
|
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints" |
|
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution" |
|
|
|
|
|
|
|
|
|
|
|
|
|
#define TN_TOKEN_EMBD "%s.token_embd.weight" |
|
#define TN_POS_EMBD "%s.position_embd.weight" |
|
#define TN_CLASS_EMBD "v.class_embd" |
|
#define TN_PATCH_EMBD "v.patch_embd.weight" |
|
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1" |
|
#define TN_PATCH_BIAS "v.patch_embd.bias" |
|
#define TN_ATTN_K "%s.blk.%d.attn_k.%s" |
|
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s" |
|
#define TN_ATTN_V "%s.blk.%d.attn_v.%s" |
|
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s" |
|
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s" |
|
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s" |
|
#define TN_LN_1 "%s.blk.%d.ln1.%s" |
|
#define TN_LN_2 "%s.blk.%d.ln2.%s" |
|
#define TN_LN_PRE "%s.pre_ln.%s" |
|
#define TN_LN_POST "%s.post_ln.%s" |
|
#define TN_TEXT_PROJ "text_projection.weight" |
|
#define TN_VIS_PROJ "visual_projection.weight" |
|
#define TN_LLAVA_PROJ "mm.%d.%s" |
|
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s" |
|
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s" |
|
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s" |
|
#define TN_IMAGE_NEWLINE "model.image_newline" |
|
#define TN_MM_INP_PROJ "mm.input_projection.weight" |
|
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" |
|
|
|
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k" |
|
#define TN_MINICPMV_QUERY "resampler.query" |
|
#define TN_MINICPMV_PROJ "resampler.proj.weight" |
|
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight" |
|
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s" |
|
#define TN_MINICPMV_LN "resampler.ln_%s.%s" |
|
|
|
#define TN_GLM_ADAPER_CONV "adapter.conv.%s" |
|
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s" |
|
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s" |
|
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s" |
|
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s" |
|
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s" |
|
#define TN_GLM_BOI_W "adapter.boi" |
|
#define TN_GLM_EOI_W "adapter.eoi" |
|
|
|
|
|
enum projector_type { |
|
PROJECTOR_TYPE_MLP, |
|
PROJECTOR_TYPE_MLP_NORM, |
|
PROJECTOR_TYPE_LDP, |
|
PROJECTOR_TYPE_LDPV2, |
|
PROJECTOR_TYPE_RESAMPLER, |
|
PROJECTOR_TYPE_GLM_EDGE, |
|
PROJECTOR_TYPE_MERGER, |
|
PROJECTOR_TYPE_GEMMA3, |
|
PROJECTOR_TYPE_UNKNOWN, |
|
}; |
|
|
|
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = { |
|
{ PROJECTOR_TYPE_MLP, "mlp" }, |
|
{ PROJECTOR_TYPE_LDP, "ldp" }, |
|
{ PROJECTOR_TYPE_LDPV2, "ldpv2"}, |
|
{ PROJECTOR_TYPE_RESAMPLER, "resampler"}, |
|
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"}, |
|
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"}, |
|
{ PROJECTOR_TYPE_GEMMA3, "gemma3"}, |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
static int get_key_idx(const gguf_context * ctx, const char * key) { |
|
int i = gguf_find_key(ctx, key); |
|
if (i == -1) { |
|
LOG_ERR("key %s not found in file\n", key); |
|
throw std::runtime_error(format("Missing required key: %s", key)); |
|
} |
|
|
|
return i; |
|
} |
|
|
|
static uint32_t get_u32(const gguf_context * ctx, const std::string & key) { |
|
const int i = get_key_idx(ctx, key.c_str()); |
|
|
|
return gguf_get_val_u32(ctx, i); |
|
} |
|
|
|
static float get_f32(const gguf_context * ctx, const std::string & key) { |
|
const int i = get_key_idx(ctx, key.c_str()); |
|
|
|
return gguf_get_val_f32(ctx, i); |
|
} |
|
|
|
static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) { |
|
struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str()); |
|
if (!cur) { |
|
throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str())); |
|
} |
|
|
|
return cur; |
|
} |
|
|
|
static std::string get_ftype(int ftype) { |
|
return ggml_type_name(static_cast<ggml_type>(ftype)); |
|
} |
|
|
|
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { |
|
switch (type) { |
|
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); |
|
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); |
|
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); |
|
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); |
|
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); |
|
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); |
|
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); |
|
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); |
|
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); |
|
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); |
|
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; |
|
default: return format("unknown type %d", type); |
|
} |
|
} |
|
|
|
static void replace_all(std::string & s, const std::string & search, const std::string & replace) { |
|
if (search.empty()) { |
|
return; |
|
} |
|
std::string builder; |
|
builder.reserve(s.length()); |
|
size_t pos = 0; |
|
size_t last_pos = 0; |
|
while ((pos = s.find(search, last_pos)) != std::string::npos) { |
|
builder.append(s, last_pos, pos - last_pos); |
|
builder.append(replace); |
|
last_pos = pos + search.length(); |
|
} |
|
builder.append(s, last_pos, std::string::npos); |
|
s = std::move(builder); |
|
} |
|
|
|
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { |
|
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); |
|
|
|
switch (type) { |
|
case GGUF_TYPE_STRING: |
|
return gguf_get_val_str(ctx_gguf, i); |
|
case GGUF_TYPE_ARRAY: |
|
{ |
|
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); |
|
int arr_n = gguf_get_arr_n(ctx_gguf, i); |
|
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i); |
|
std::stringstream ss; |
|
ss << "["; |
|
for (int j = 0; j < arr_n; j++) { |
|
if (arr_type == GGUF_TYPE_STRING) { |
|
std::string val = gguf_get_arr_str(ctx_gguf, i, j); |
|
|
|
replace_all(val, "\\", "\\\\"); |
|
replace_all(val, "\"", "\\\""); |
|
ss << '"' << val << '"'; |
|
} else if (arr_type == GGUF_TYPE_ARRAY) { |
|
ss << "???"; |
|
} else { |
|
ss << gguf_data_to_str(arr_type, data, j); |
|
} |
|
if (j < arr_n - 1) { |
|
ss << ", "; |
|
} |
|
} |
|
ss << "]"; |
|
return ss.str(); |
|
} |
|
default: |
|
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); |
|
} |
|
} |
|
|
|
static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") { |
|
size_t tensor_size = ggml_nbytes(tensor); |
|
LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n", |
|
prefix, ggml_n_dims(tensor), tensor->name, tensor_size, |
|
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type)); |
|
} |
|
|
|
static projector_type clip_projector_type_from_string(const std::string & name) { |
|
for (const auto & kv : PROJECTOR_TYPE_NAMES) { |
|
if (kv.second == name) { |
|
return kv.first; |
|
} |
|
} |
|
throw std::runtime_error(format("Unknown projector type: %s", name.c_str())); |
|
} |
|
|
|
#ifdef CLIP_DEBUG_FUNCTIONS |
|
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) { |
|
std::ofstream file(filename, std::ios::binary); |
|
if (!file.is_open()) { |
|
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); |
|
return; |
|
} |
|
|
|
|
|
file << "P6\n" << img.nx << " " << img.ny << "\n255\n"; |
|
|
|
|
|
for (size_t i = 0; i < img.buf.size(); i += 3) { |
|
|
|
file.write(reinterpret_cast<const char*>(&img.buf[i]), 3); |
|
} |
|
|
|
file.close(); |
|
} |
|
|
|
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) { |
|
std::ofstream file(filename, std::ios::binary); |
|
if (!file.is_open()) { |
|
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); |
|
return; |
|
} |
|
|
|
int fileSize = 54 + 3 * img.nx * img.ny; |
|
int bytesPerPixel = 3; |
|
int widthInBytes = img.nx * bytesPerPixel; |
|
int paddingAmount = (4 - (widthInBytes % 4)) % 4; |
|
int stride = widthInBytes + paddingAmount; |
|
|
|
|
|
unsigned char fileHeader[14] = { |
|
'B','M', |
|
0,0,0,0, |
|
0,0,0,0, |
|
54,0,0,0 |
|
}; |
|
|
|
|
|
fileSize = 54 + (stride * img.ny); |
|
fileHeader[2] = (unsigned char)(fileSize); |
|
fileHeader[3] = (unsigned char)(fileSize >> 8); |
|
fileHeader[4] = (unsigned char)(fileSize >> 16); |
|
fileHeader[5] = (unsigned char)(fileSize >> 24); |
|
|
|
|
|
unsigned char infoHeader[40] = { |
|
40,0,0,0, |
|
0,0,0,0, |
|
0,0,0,0, |
|
1,0, |
|
24,0, |
|
0,0,0,0, |
|
0,0,0,0, |
|
0,0,0,0, |
|
0,0,0,0, |
|
0,0,0,0, |
|
0,0,0,0 |
|
}; |
|
|
|
|
|
infoHeader[4] = (unsigned char)(img.nx); |
|
infoHeader[5] = (unsigned char)(img.nx >> 8); |
|
infoHeader[6] = (unsigned char)(img.nx >> 16); |
|
infoHeader[7] = (unsigned char)(img.nx >> 24); |
|
infoHeader[8] = (unsigned char)(img.ny); |
|
infoHeader[9] = (unsigned char)(img.ny >> 8); |
|
infoHeader[10] = (unsigned char)(img.ny >> 16); |
|
infoHeader[11] = (unsigned char)(img.ny >> 24); |
|
|
|
|
|
file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader)); |
|
file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader)); |
|
|
|
|
|
std::vector<unsigned char> padding(3, 0); |
|
for (int y = img.ny - 1; y >= 0; --y) { |
|
for (int x = 0; x < img.nx; ++x) { |
|
|
|
size_t pixelIndex = (y * img.nx + x) * 3; |
|
unsigned char pixel[3] = { |
|
img.buf[pixelIndex + 2], |
|
img.buf[pixelIndex + 1], |
|
img.buf[pixelIndex] |
|
}; |
|
file.write(reinterpret_cast<char*>(pixel), 3); |
|
} |
|
|
|
file.write(reinterpret_cast<char*>(padding.data()), paddingAmount); |
|
} |
|
|
|
file.close(); |
|
} |
|
|
|
|
|
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) { |
|
dst.nx = src.nx; |
|
dst.ny = src.ny; |
|
dst.buf.resize(3 * src.nx * src.ny); |
|
for (size_t i = 0; i < src.buf.size(); ++i) { |
|
dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255)); |
|
} |
|
} |
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
struct clip_hparams { |
|
int32_t image_size; |
|
int32_t patch_size; |
|
int32_t hidden_size; |
|
int32_t n_intermediate; |
|
int32_t projection_dim; |
|
int32_t n_head; |
|
int32_t n_layer; |
|
|
|
float eps; |
|
|
|
char mm_patch_merge_type[32] = "flat"; |
|
|
|
std::vector<int32_t> image_grid_pinpoints; |
|
int32_t image_crop_resolution; |
|
std::unordered_set<int32_t> vision_feature_layer; |
|
}; |
|
|
|
struct clip_layer { |
|
|
|
struct ggml_tensor * k_w; |
|
struct ggml_tensor * k_b; |
|
struct ggml_tensor * q_w; |
|
struct ggml_tensor * q_b; |
|
struct ggml_tensor * v_w; |
|
struct ggml_tensor * v_b; |
|
|
|
struct ggml_tensor * o_w; |
|
struct ggml_tensor * o_b; |
|
|
|
|
|
struct ggml_tensor * ln_1_w; |
|
struct ggml_tensor * ln_1_b; |
|
|
|
|
|
struct ggml_tensor * ff_i_w; |
|
struct ggml_tensor * ff_i_b; |
|
|
|
struct ggml_tensor * ff_o_w; |
|
struct ggml_tensor * ff_o_b; |
|
|
|
|
|
struct ggml_tensor * ln_2_w; |
|
struct ggml_tensor * ln_2_b; |
|
}; |
|
|
|
struct clip_vision_model { |
|
struct clip_hparams hparams; |
|
|
|
|
|
struct ggml_tensor * class_embedding; |
|
struct ggml_tensor * patch_embeddings_0; |
|
struct ggml_tensor * patch_embeddings_1; |
|
struct ggml_tensor * patch_bias; |
|
struct ggml_tensor * position_embeddings; |
|
|
|
struct ggml_tensor * pre_ln_w; |
|
struct ggml_tensor * pre_ln_b; |
|
|
|
std::vector<clip_layer> layers; |
|
|
|
struct ggml_tensor * post_ln_w; |
|
struct ggml_tensor * post_ln_b; |
|
|
|
struct ggml_tensor * projection; |
|
|
|
|
|
struct ggml_tensor * mm_0_w = NULL; |
|
struct ggml_tensor * mm_0_b = NULL; |
|
struct ggml_tensor * mm_2_w = NULL; |
|
struct ggml_tensor * mm_2_b = NULL; |
|
|
|
struct ggml_tensor * image_newline = NULL; |
|
|
|
|
|
struct ggml_tensor * mm_1_w = NULL; |
|
struct ggml_tensor * mm_1_b = NULL; |
|
struct ggml_tensor * mm_3_w = NULL; |
|
struct ggml_tensor * mm_3_b = NULL; |
|
struct ggml_tensor * mm_4_w = NULL; |
|
struct ggml_tensor * mm_4_b = NULL; |
|
|
|
|
|
struct ggml_tensor * mm_model_adapter_conv_w; |
|
struct ggml_tensor * mm_model_adapter_conv_b; |
|
struct ggml_tensor * boi_w; |
|
struct ggml_tensor * eoi_w; |
|
|
|
|
|
struct ggml_tensor * mm_model_mlp_1_w; |
|
struct ggml_tensor * mm_model_mlp_1_b; |
|
struct ggml_tensor * mm_model_mlp_3_w; |
|
struct ggml_tensor * mm_model_mlp_3_b; |
|
struct ggml_tensor * mm_model_block_1_block_0_0_w; |
|
struct ggml_tensor * mm_model_block_1_block_0_1_w; |
|
struct ggml_tensor * mm_model_block_1_block_0_1_b; |
|
struct ggml_tensor * mm_model_block_1_block_1_fc1_w; |
|
struct ggml_tensor * mm_model_block_1_block_1_fc1_b; |
|
struct ggml_tensor * mm_model_block_1_block_1_fc2_w; |
|
struct ggml_tensor * mm_model_block_1_block_1_fc2_b; |
|
struct ggml_tensor * mm_model_block_1_block_2_0_w; |
|
struct ggml_tensor * mm_model_block_1_block_2_1_w; |
|
struct ggml_tensor * mm_model_block_1_block_2_1_b; |
|
struct ggml_tensor * mm_model_block_2_block_0_0_w; |
|
struct ggml_tensor * mm_model_block_2_block_0_1_w; |
|
struct ggml_tensor * mm_model_block_2_block_0_1_b; |
|
struct ggml_tensor * mm_model_block_2_block_1_fc1_w; |
|
struct ggml_tensor * mm_model_block_2_block_1_fc1_b; |
|
struct ggml_tensor * mm_model_block_2_block_1_fc2_w; |
|
struct ggml_tensor * mm_model_block_2_block_1_fc2_b; |
|
struct ggml_tensor * mm_model_block_2_block_2_0_w; |
|
struct ggml_tensor * mm_model_block_2_block_2_1_w; |
|
struct ggml_tensor * mm_model_block_2_block_2_1_b; |
|
|
|
|
|
struct ggml_tensor * mm_model_mlp_0_w; |
|
struct ggml_tensor * mm_model_mlp_0_b; |
|
struct ggml_tensor * mm_model_mlp_2_w; |
|
struct ggml_tensor * mm_model_mlp_2_b; |
|
struct ggml_tensor * mm_model_peg_0_w; |
|
struct ggml_tensor * mm_model_peg_0_b; |
|
|
|
|
|
struct ggml_tensor * mm_model_pos_embed_k; |
|
struct ggml_tensor * mm_model_query; |
|
struct ggml_tensor * mm_model_proj; |
|
struct ggml_tensor * mm_model_kv_proj; |
|
struct ggml_tensor * mm_model_attn_q_w; |
|
struct ggml_tensor * mm_model_attn_q_b; |
|
struct ggml_tensor * mm_model_attn_k_w; |
|
struct ggml_tensor * mm_model_attn_k_b; |
|
struct ggml_tensor * mm_model_attn_v_w; |
|
struct ggml_tensor * mm_model_attn_v_b; |
|
struct ggml_tensor * mm_model_attn_o_w; |
|
struct ggml_tensor * mm_model_attn_o_b; |
|
struct ggml_tensor * mm_model_ln_q_w; |
|
struct ggml_tensor * mm_model_ln_q_b; |
|
struct ggml_tensor * mm_model_ln_kv_w; |
|
struct ggml_tensor * mm_model_ln_kv_b; |
|
struct ggml_tensor * mm_model_ln_post_w; |
|
struct ggml_tensor * mm_model_ln_post_b; |
|
|
|
|
|
struct ggml_tensor * mm_input_proj_w; |
|
struct ggml_tensor * mm_soft_emb_norm_w; |
|
}; |
|
|
|
bool enable_gpu_clip = true; |
|
void set_clip_uses_gpu(bool usegpu) |
|
{ |
|
enable_gpu_clip = usegpu; |
|
} |
|
|
|
struct clip_ctx { |
|
bool has_text_encoder = false; |
|
bool has_vision_encoder = false; |
|
bool has_llava_projector = false; |
|
bool has_minicpmv_projector = false; |
|
bool has_glm_projector = false; |
|
bool has_qwen2vl_merger = false; |
|
int minicpmv_version = 2; |
|
|
|
struct clip_vision_model vision_model; |
|
projector_type proj_type = PROJECTOR_TYPE_MLP; |
|
|
|
int32_t max_feature_layer; |
|
float image_mean[3]; |
|
float image_std[3]; |
|
bool use_gelu = false; |
|
bool use_silu = false; |
|
int32_t ftype = 1; |
|
|
|
bool has_class_embedding = true; |
|
bool has_pre_norm = true; |
|
bool has_post_norm = false; |
|
bool has_patch_bias = false; |
|
|
|
struct gguf_context * ctx_gguf = nullptr; |
|
struct ggml_context * ctx_data = nullptr; |
|
|
|
std::vector<uint8_t> buf_compute_meta; |
|
|
|
std::vector<ggml_backend_t> backend_ptrs; |
|
std::vector<ggml_backend_buffer_type_t> backend_buft; |
|
|
|
ggml_backend_t backend = nullptr; |
|
ggml_backend_buffer_t buf = nullptr; |
|
|
|
ggml_backend_sched_ptr sched; |
|
|
|
struct clip_image_size * load_image_size = nullptr; |
|
|
|
clip_ctx(clip_context_params & ctx_params) { |
|
|
|
if(enable_gpu_clip) |
|
{ |
|
#ifdef GGML_USE_CUDA |
|
backend = ggml_backend_cuda_init(0); |
|
LOG_INF("%s: CLIP using CUDA backend\n", __func__); |
|
#endif |
|
#ifdef GGML_USE_METAL |
|
backend = ggml_backend_metal_init(); |
|
LOG_INF("%s: CLIP using Metal backend\n", __func__); |
|
#endif |
|
#ifdef GGML_USE_VULKAN |
|
backend = ggml_backend_vk_init(0); |
|
LOG_INF("%s: CLIP using Vulkan backend\n", __func__); |
|
#endif |
|
} |
|
|
|
if (!backend) { |
|
backend = ggml_backend_cpu_init(); |
|
LOG_INF("%s: CLIP using CPU backend\n", __func__); |
|
} |
|
|
|
backend_ptrs.push_back(backend); |
|
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend)); |
|
|
|
sched.reset( |
|
ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false) |
|
); |
|
} |
|
|
|
~clip_ctx() { |
|
ggml_free(ctx_data); |
|
gguf_free(ctx_gguf); |
|
ggml_backend_buffer_free(buf); |
|
ggml_backend_free(backend); |
|
} |
|
}; |
|
|
|
static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32_batch * imgs) { |
|
const auto & model = ctx->vision_model; |
|
const auto & hparams = model.hparams; |
|
|
|
const int image_size = hparams.image_size; |
|
int image_size_width = image_size; |
|
int image_size_height = image_size; |
|
|
|
const int patch_size = hparams.patch_size; |
|
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); |
|
const int hidden_size = hparams.hidden_size; |
|
const int n_head = hparams.n_head; |
|
const int d_head = hidden_size / n_head; |
|
const int n_layer = hparams.n_layer; |
|
const float eps = hparams.eps; |
|
|
|
GGML_ASSERT(imgs->size == 1); |
|
|
|
struct ggml_init_params params = { |
|
ctx->buf_compute_meta.size(), |
|
ctx->buf_compute_meta.data(), |
|
true, |
|
}; |
|
|
|
struct ggml_context * ctx0 = ggml_init(params); |
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0); |
|
|
|
|
|
struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3); |
|
ggml_set_name(inp_raw, "inp_raw"); |
|
ggml_set_input(inp_raw); |
|
|
|
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1); |
|
inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size); |
|
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp)); |
|
inp = ggml_add(ctx0, inp, model.patch_bias); |
|
|
|
|
|
struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings); |
|
|
|
|
|
for (int il = 0; il < n_layer; il++) { |
|
struct ggml_tensor * cur = embeddings; |
|
|
|
|
|
{ |
|
cur = ggml_norm(ctx0, cur, eps); |
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b); |
|
} |
|
|
|
|
|
{ |
|
|
|
struct ggml_tensor * Q = |
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); |
|
|
|
Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches); |
|
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); |
|
|
|
struct ggml_tensor * K = |
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); |
|
|
|
K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches); |
|
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); |
|
|
|
struct ggml_tensor * V = |
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b); |
|
|
|
V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches); |
|
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); |
|
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); |
|
KQ = ggml_scale_inplace(ctx0, KQ, 1.0f / sqrtf((float)d_head)); |
|
KQ = ggml_soft_max_inplace(ctx0, KQ); |
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); |
|
KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head); |
|
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); |
|
|
|
cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches); |
|
} |
|
|
|
|
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b); |
|
|
|
|
|
cur = ggml_add(ctx0, cur, embeddings); |
|
|
|
embeddings = cur; |
|
|
|
|
|
{ |
|
cur = ggml_norm(ctx0, cur, eps); |
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b); |
|
} |
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); |
|
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b); |
|
|
|
|
|
cur = ggml_gelu(ctx0, cur); |
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); |
|
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b); |
|
|
|
|
|
cur = ggml_add(ctx0, embeddings, cur); |
|
|
|
embeddings = cur; |
|
} |
|
|
|
|
|
if (ctx->has_post_norm) { |
|
embeddings = ggml_norm(ctx0, embeddings, eps); |
|
ggml_set_name(embeddings, "post_ln"); |
|
|
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b); |
|
} |
|
|
|
if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { |
|
const int batch_size = 1; |
|
const int mm_tokens_per_image = 256; |
|
const int tokens_per_side = sqrt(mm_tokens_per_image); |
|
const int patches_per_image = sqrt(num_patches); |
|
const int kernel_size = patches_per_image / tokens_per_side; |
|
|
|
embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings)); |
|
embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size); |
|
|
|
|
|
embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0); |
|
embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size); |
|
embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings)); |
|
|
|
|
|
embeddings = ggml_rms_norm(ctx0, embeddings, eps); |
|
embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w); |
|
|
|
|
|
embeddings = ggml_mul_mat(ctx0, |
|
ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)), |
|
embeddings); |
|
} |
|
|
|
|
|
ggml_build_forward_expand(gf, embeddings); |
|
|
|
ggml_free(ctx0); |
|
|
|
return gf; |
|
} |
|
|
|
static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) { |
|
if (!ctx->has_vision_encoder) { |
|
LOG_ERR("This gguf file seems to have no vision encoder\n"); |
|
return nullptr; |
|
} |
|
|
|
const auto & model = ctx->vision_model; |
|
const auto & hparams = model.hparams; |
|
|
|
const int image_size = hparams.image_size; |
|
int image_size_width = image_size; |
|
int image_size_height = image_size; |
|
if (ctx->has_minicpmv_projector) { |
|
if (load_image_size == nullptr) { |
|
load_image_size = clip_image_size_init(); |
|
} |
|
LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height); |
|
image_size_width = load_image_size->width; |
|
image_size_height = load_image_size->height; |
|
if (is_inf) { |
|
image_size_width = imgs->data->nx; |
|
image_size_height = imgs->data->ny; |
|
} |
|
} |
|
else if (ctx->has_qwen2vl_merger) { |
|
|
|
if (is_inf) { |
|
|
|
image_size_width = imgs->data->nx; |
|
image_size_height = imgs->data->ny; |
|
} |
|
} |
|
const int patch_size = hparams.patch_size; |
|
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); |
|
const int patches_w = image_size_width / patch_size; |
|
const int patches_h = image_size_height / patch_size; |
|
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); |
|
const int num_position_ids = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions; |
|
const int hidden_size = hparams.hidden_size; |
|
const int n_head = hparams.n_head; |
|
const int d_head = hidden_size / n_head; |
|
const float eps = hparams.eps; |
|
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4}; |
|
|
|
const int batch_size = imgs->size; |
|
|
|
if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) { |
|
GGML_ASSERT(batch_size == 1); |
|
} |
|
|
|
struct ggml_init_params params = { |
|
ctx->buf_compute_meta.size(), |
|
ctx->buf_compute_meta.data(), |
|
true, |
|
}; |
|
|
|
struct ggml_context * ctx0 = ggml_init(params); |
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0); |
|
|
|
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size); |
|
ggml_set_name(inp_raw, "inp_raw"); |
|
ggml_set_input(inp_raw); |
|
|
|
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1); |
|
|
|
if (ctx->has_qwen2vl_merger) { |
|
GGML_ASSERT(image_size_width % (patch_size * 2) == 0); |
|
GGML_ASSERT(image_size_height % (patch_size * 2) == 0); |
|
|
|
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1); |
|
inp = ggml_add(ctx0, inp, inp_1); |
|
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); |
|
inp = ggml_reshape_4d( |
|
ctx0, inp, |
|
hidden_size * 2, patches_w / 2, patches_h, batch_size); |
|
inp = ggml_reshape_4d( |
|
ctx0, inp, |
|
hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2)); |
|
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3)); |
|
inp = ggml_reshape_3d( |
|
ctx0, inp, |
|
hidden_size, patches_w * patches_h, batch_size); |
|
} |
|
else { |
|
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); |
|
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); |
|
} |
|
|
|
if (ctx->has_patch_bias) { |
|
|
|
inp = ggml_add(ctx0, inp, model.patch_bias); |
|
} |
|
struct ggml_tensor * embeddings = inp; |
|
struct ggml_tensor * pos_embed = nullptr; |
|
|
|
if (ctx->has_llava_projector) { |
|
|
|
if (ctx->has_class_embedding) { |
|
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); |
|
ggml_set_name(embeddings, "embeddings"); |
|
ggml_set_input(embeddings); |
|
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, |
|
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); |
|
embeddings = ggml_acc(ctx0, embeddings, inp, |
|
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); |
|
} |
|
} |
|
|
|
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids); |
|
ggml_set_name(positions, "positions"); |
|
ggml_set_input(positions); |
|
|
|
if (!ctx->has_qwen2vl_merger) { |
|
embeddings = |
|
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); |
|
} |
|
|
|
if (ctx->has_minicpmv_projector) { |
|
int pos_w = image_size_width/patch_size; |
|
int pos_h = image_size_height/patch_size; |
|
if (ctx->minicpmv_version == 2) { |
|
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1); |
|
} |
|
else if (ctx->minicpmv_version == 3) { |
|
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1); |
|
} |
|
else if (ctx->minicpmv_version == 4) { |
|
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1); |
|
} |
|
ggml_set_name(pos_embed, "pos_embed"); |
|
ggml_set_input(pos_embed); |
|
} |
|
|
|
|
|
if (ctx->has_pre_norm) { |
|
embeddings = ggml_norm(ctx0, embeddings, eps); |
|
ggml_set_name(embeddings, "pre_ln"); |
|
|
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b); |
|
} |
|
|
|
std::vector<struct ggml_tensor *> embedding_stack; |
|
const auto & vision_feature_layer = hparams.vision_feature_layer; |
|
|
|
|
|
for (int il = 0; il < ctx->max_feature_layer; il++) { |
|
struct ggml_tensor * cur = embeddings; |
|
|
|
|
|
|
|
if (vision_feature_layer.find(il) != vision_feature_layer.end()) { |
|
embedding_stack.push_back(embeddings); |
|
} |
|
|
|
|
|
|
|
|
|
{ |
|
cur = ggml_norm(ctx0, cur, eps); |
|
|
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), |
|
model.layers[il].ln_1_b); |
|
} |
|
|
|
|
|
{ |
|
|
|
struct ggml_tensor * Q = |
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); |
|
|
|
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size); |
|
if (ctx->has_qwen2vl_merger) { |
|
Q = ggml_rope_multi( |
|
ctx0, Q, positions, nullptr, |
|
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1); |
|
} |
|
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); |
|
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); |
|
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size); |
|
|
|
struct ggml_tensor * K = |
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); |
|
|
|
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); |
|
if (ctx->has_qwen2vl_merger) { |
|
K = ggml_rope_multi( |
|
ctx0, K, positions, nullptr, |
|
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1); |
|
} |
|
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); |
|
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); |
|
|
|
struct ggml_tensor * V = |
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b); |
|
|
|
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); |
|
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); |
|
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); |
|
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); |
|
KQ = ggml_soft_max_inplace(ctx0, KQ); |
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); |
|
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size); |
|
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); |
|
|
|
cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size); |
|
} |
|
|
|
|
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b); |
|
|
|
|
|
cur = ggml_add(ctx0, cur, embeddings); |
|
|
|
embeddings = cur; |
|
|
|
|
|
{ |
|
cur = ggml_norm(ctx0, cur, eps); |
|
|
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b); |
|
} |
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); |
|
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b); |
|
|
|
if (ctx->use_gelu) { |
|
cur = ggml_gelu_inplace(ctx0, cur); |
|
} else if (ctx->use_silu) { |
|
cur = ggml_silu_inplace(ctx0, cur); |
|
} else { |
|
cur = ggml_gelu_quick_inplace(ctx0, cur); |
|
} |
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); |
|
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b); |
|
|
|
|
|
cur = ggml_add(ctx0, embeddings, cur); |
|
|
|
embeddings = cur; |
|
} |
|
|
|
|
|
if (ctx->has_post_norm) { |
|
embeddings = ggml_norm(ctx0, embeddings, eps); |
|
ggml_set_name(embeddings, "post_ln"); |
|
|
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b); |
|
} |
|
|
|
|
|
if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) { |
|
embedding_stack.push_back(embeddings); |
|
} |
|
|
|
|
|
if (!embedding_stack.empty()) { |
|
embeddings = embedding_stack[0]; |
|
for (size_t i = 1; i < embedding_stack.size(); i++) { |
|
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0); |
|
} |
|
} |
|
|
|
|
|
if (ctx->has_llava_projector) { |
|
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); |
|
|
|
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches); |
|
ggml_set_name(patches, "patches"); |
|
ggml_set_input(patches); |
|
|
|
|
|
|
|
embeddings = ggml_get_rows(ctx0, embeddings, patches); |
|
|
|
|
|
|
|
|
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP) { |
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); |
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); |
|
|
|
embeddings = ggml_gelu(ctx0, embeddings); |
|
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); |
|
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); |
|
} |
|
else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { |
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); |
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); |
|
|
|
|
|
embeddings = ggml_norm(ctx0, embeddings, eps); |
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w), |
|
model.mm_1_b); |
|
|
|
|
|
embeddings = ggml_gelu(ctx0, embeddings); |
|
|
|
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings); |
|
embeddings = ggml_add(ctx0, embeddings, model.mm_3_b); |
|
|
|
|
|
embeddings = ggml_norm(ctx0, embeddings, eps); |
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w), |
|
model.mm_4_b); |
|
} |
|
else if (ctx->proj_type == PROJECTOR_TYPE_LDP) { |
|
|
|
int n_patch = 24; |
|
struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings); |
|
mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b); |
|
mlp_1 = ggml_gelu(ctx0, mlp_1); |
|
struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1); |
|
mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b); |
|
|
|
|
|
|
|
struct ggml_tensor * block_1 = nullptr; |
|
{ |
|
|
|
mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3)); |
|
mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]); |
|
|
|
block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1); |
|
|
|
|
|
|
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); |
|
|
|
block_1 = ggml_norm(ctx0, block_1, eps); |
|
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b); |
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); |
|
|
|
|
|
|
|
struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); |
|
|
|
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); |
|
|
|
|
|
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); |
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1); |
|
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b); |
|
block_1 = ggml_relu(ctx0, block_1); |
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1); |
|
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b); |
|
block_1 = ggml_hardsigmoid(ctx0, block_1); |
|
|
|
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); |
|
block_1 = ggml_mul(ctx0, block_1_hw, block_1); |
|
|
|
int w = block_1->ne[0], h = block_1->ne[1]; |
|
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); |
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); |
|
|
|
|
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1); |
|
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); |
|
|
|
|
|
block_1 = ggml_norm(ctx0, block_1, eps); |
|
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b); |
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); |
|
|
|
|
|
block_1 = ggml_add(ctx0, mlp_3, block_1); |
|
} |
|
|
|
|
|
{ |
|
|
|
block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1); |
|
|
|
|
|
|
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); |
|
|
|
block_1 = ggml_norm(ctx0, block_1, eps); |
|
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b); |
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); |
|
|
|
|
|
struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); |
|
|
|
|
|
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); |
|
|
|
|
|
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); |
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1); |
|
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b); |
|
block_1 = ggml_relu(ctx0, block_1); |
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1); |
|
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b); |
|
block_1 = ggml_hardsigmoid(ctx0, block_1); |
|
|
|
|
|
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); |
|
block_1 = ggml_mul(ctx0, block_1_hw, block_1); |
|
|
|
int w = block_1->ne[0], h = block_1->ne[1]; |
|
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); |
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); |
|
|
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1); |
|
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); |
|
|
|
|
|
|
|
block_1 = ggml_norm(ctx0, block_1, eps); |
|
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b); |
|
block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]); |
|
|
|
} |
|
embeddings = block_1; |
|
} |
|
else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) |
|
{ |
|
int n_patch = 24; |
|
struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings); |
|
mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b); |
|
mlp_0 = ggml_gelu(ctx0, mlp_0); |
|
struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0); |
|
mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b); |
|
|
|
|
|
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3)); |
|
|
|
mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]); |
|
|
|
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0); |
|
|
|
struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1); |
|
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3)); |
|
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b); |
|
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3)); |
|
peg_0 = ggml_add(ctx0, peg_0, mlp_2); |
|
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]); |
|
embeddings = peg_0; |
|
} |
|
else { |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
|
|
else if (ctx->has_minicpmv_projector) |
|
{ |
|
if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { |
|
struct ggml_tensor * q = model.mm_model_query; |
|
{ |
|
q = ggml_norm(ctx0, q, eps); |
|
q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b); |
|
} |
|
struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings); |
|
{ |
|
v = ggml_norm(ctx0, v, eps); |
|
v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b); |
|
} |
|
struct ggml_tensor * k; |
|
{ |
|
|
|
k = ggml_add(ctx0, v, pos_embed); |
|
} |
|
|
|
{ |
|
int hidden_size = 4096; |
|
const int d_head = 128; |
|
int n_head = hidden_size/d_head; |
|
int num_query = 96; |
|
if (ctx->minicpmv_version == 2) { |
|
hidden_size = 4096; |
|
n_head = hidden_size/d_head; |
|
num_query = 96; |
|
} |
|
else if (ctx->minicpmv_version == 3) { |
|
hidden_size = 3584; |
|
n_head = hidden_size/d_head; |
|
num_query = 64; |
|
} |
|
else if (ctx->minicpmv_version == 4) { |
|
hidden_size = 3584; |
|
n_head = hidden_size/d_head; |
|
num_query = 64; |
|
} |
|
|
|
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b); |
|
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); |
|
struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b); |
|
struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b); |
|
|
|
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size); |
|
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); |
|
Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size); |
|
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); |
|
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); |
|
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); |
|
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); |
|
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); |
|
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); |
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); |
|
KQ = ggml_soft_max_inplace(ctx0, KQ); |
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); |
|
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size); |
|
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); |
|
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size); |
|
|
|
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b); |
|
} |
|
{ |
|
embeddings = ggml_norm(ctx0, embeddings, eps); |
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b); |
|
} |
|
embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings); |
|
} |
|
else { |
|
GGML_ASSERT(false); |
|
} |
|
} |
|
|
|
else if (ctx->has_glm_projector) { |
|
if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) { |
|
size_t gridsz = (size_t)sqrt(embeddings->ne[1]); |
|
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3)); |
|
embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]); |
|
embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1); |
|
embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size); |
|
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3)); |
|
embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b); |
|
|
|
{ |
|
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings); |
|
embeddings = ggml_norm(ctx0, embeddings, eps); |
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b); |
|
embeddings = ggml_gelu_inplace(ctx0, embeddings); |
|
struct ggml_tensor * x = embeddings; |
|
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings); |
|
x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x); |
|
embeddings = ggml_silu_inplace(ctx0, embeddings); |
|
embeddings = ggml_mul(ctx0, embeddings,x); |
|
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings); |
|
} |
|
} else { |
|
GGML_ABORT("fatel error"); |
|
} |
|
} |
|
else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) { |
|
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size); |
|
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); |
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); |
|
|
|
|
|
embeddings = ggml_gelu(ctx0, embeddings); |
|
|
|
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings); |
|
embeddings = ggml_add(ctx0, embeddings, model.mm_1_b); |
|
} |
|
|
|
|
|
ggml_build_forward_expand(gf, embeddings); |
|
|
|
ggml_free(ctx0); |
|
|
|
return gf; |
|
} |
|
|
|
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) { |
|
if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { |
|
return clip_image_build_graph_siglip(ctx, imgs); |
|
} else { |
|
|
|
return clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf); |
|
} |
|
} |
|
|
|
|
|
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { |
|
return clip_init(fname, clip_context_params{ |
|
true, |
|
verbosity, |
|
}); |
|
} |
|
|
|
struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) { |
|
int verbosity = ctx_params.verbosity; |
|
struct ggml_context * meta = NULL; |
|
|
|
struct gguf_init_params params = { |
|
true, |
|
&meta, |
|
}; |
|
|
|
struct gguf_context * ctx = gguf_init_from_file(fname, params); |
|
if (!ctx) { |
|
throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname)); |
|
} |
|
|
|
if (verbosity >= 1) { |
|
try { |
|
const int n_tensors = gguf_get_n_tensors(ctx); |
|
const int n_kv = gguf_get_n_kv(ctx); |
|
const int ftype = get_u32(ctx, KEY_FTYPE); |
|
const std::string ftype_str = get_ftype(ftype); |
|
const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION); |
|
const std::string description = gguf_get_val_str(ctx, idx_desc); |
|
const int idx_name = gguf_find_key(ctx, KEY_NAME); |
|
if (idx_name != -1) { |
|
const std::string name = gguf_get_val_str(ctx, idx_name); |
|
LOG_INF("%s: model name: %s\n", __func__, name.c_str()); |
|
} |
|
LOG_INF("%s: description: %s\n", __func__, description.c_str()); |
|
LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx)); |
|
LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); |
|
LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors); |
|
LOG_INF("%s: n_kv: %d\n", __func__, n_kv); |
|
LOG_INF("%s: ftype: %s\n", __func__, ftype_str.c_str()); |
|
LOG_INF("\n"); |
|
} catch (std::runtime_error & ) { |
|
LOG_INF("Could not list CLIP model properties.\n"); |
|
} |
|
} |
|
const int n_tensors = gguf_get_n_tensors(ctx); |
|
|
|
|
|
const int n_kv = gguf_get_n_kv(ctx); |
|
LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n", |
|
__func__, n_kv, n_tensors, fname); |
|
{ |
|
std::map<enum ggml_type, uint32_t> n_type; |
|
|
|
for (int i = 0; i < n_tensors; i++) { |
|
enum ggml_type type = gguf_get_tensor_type(ctx, i); |
|
|
|
n_type[type]++; |
|
} |
|
|
|
LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); |
|
for (int i = 0; i < n_kv; i++) { |
|
const char * name = gguf_get_key(ctx, i); |
|
const enum gguf_type type = gguf_get_kv_type(ctx, i); |
|
const std::string type_name = |
|
type == GGUF_TYPE_ARRAY |
|
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i)) |
|
: gguf_type_name(type); |
|
|
|
std::string value = gguf_kv_to_str(ctx, i); |
|
const size_t MAX_VALUE_LEN = 40; |
|
if (value.size() > MAX_VALUE_LEN) { |
|
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); |
|
} |
|
replace_all(value, "\n", "\\n"); |
|
|
|
LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); |
|
} |
|
|
|
|
|
for (auto & kv : n_type) { |
|
if (kv.second == 0) { |
|
continue; |
|
} |
|
|
|
LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); |
|
} |
|
} |
|
|
|
|
|
size_t model_size = 0; |
|
{ |
|
for (int i = 0; i < n_tensors; ++i) { |
|
const char * name = gguf_get_tensor_name(ctx, i); |
|
const size_t offset = gguf_get_tensor_offset(ctx, i); |
|
enum ggml_type type = gguf_get_tensor_type(ctx, i); |
|
struct ggml_tensor * cur = ggml_get_tensor(meta, name); |
|
size_t tensor_size = ggml_nbytes(cur); |
|
model_size += tensor_size; |
|
if (verbosity >= 3) { |
|
LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", |
|
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type)); |
|
} |
|
} |
|
} |
|
|
|
clip_ctx * new_clip = new clip_ctx(ctx_params); |
|
|
|
|
|
{ |
|
int idx = gguf_find_key(ctx, KEY_PROJ_TYPE); |
|
if (idx != -1) { |
|
const std::string proj_type = gguf_get_val_str(ctx, idx); |
|
new_clip->proj_type = clip_projector_type_from_string(proj_type); |
|
} else { |
|
new_clip->proj_type = PROJECTOR_TYPE_MLP; |
|
} |
|
|
|
if (new_clip->proj_type == PROJECTOR_TYPE_MLP) { |
|
if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) { |
|
new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM; |
|
} |
|
} |
|
} |
|
|
|
|
|
{ |
|
int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC); |
|
new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx); |
|
|
|
idx = get_key_idx(ctx, KEY_HAS_VIS_ENC); |
|
new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx); |
|
|
|
idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ); |
|
if (idx != -1) { |
|
new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx); |
|
} |
|
|
|
idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ); |
|
if (idx != -1) { |
|
new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx); |
|
} |
|
|
|
idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION); |
|
if (idx != -1) { |
|
new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx); |
|
} |
|
|
|
idx = gguf_find_key(ctx, KEY_HAS_GLM_PROJ); |
|
if (idx != -1) { |
|
new_clip->has_glm_projector = gguf_get_val_bool(ctx, idx); |
|
} |
|
|
|
idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER); |
|
if (idx != -1) { |
|
new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx); |
|
} |
|
|
|
|
|
GGML_ASSERT(new_clip->has_vision_encoder); |
|
GGML_ASSERT(!new_clip->has_text_encoder); |
|
|
|
try { |
|
idx = get_key_idx(ctx, KEY_USE_GELU); |
|
new_clip->use_gelu = gguf_get_val_bool(ctx, idx); |
|
} catch (std::runtime_error & ) { |
|
new_clip->use_gelu = false; |
|
} |
|
|
|
try { |
|
idx = get_key_idx(ctx, KEY_USE_SILU); |
|
new_clip->use_silu = gguf_get_val_bool(ctx, idx); |
|
} catch (std::runtime_error & ) { |
|
new_clip->use_silu = false; |
|
} |
|
|
|
if (verbosity >= 1) { |
|
LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); |
|
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); |
|
LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector); |
|
LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector); |
|
LOG_INF("%s: minicpmv_version: %d\n", __func__, new_clip->minicpmv_version); |
|
LOG_INF("%s: glm_projector: %d\n", __func__, new_clip->has_glm_projector); |
|
LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0); |
|
LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); |
|
} |
|
} |
|
|
|
LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors); |
|
|
|
|
|
{ |
|
std::vector<uint8_t> read_buf; |
|
struct ggml_init_params params = { |
|
(n_tensors + 1) * ggml_tensor_overhead(), |
|
NULL, |
|
true, |
|
}; |
|
|
|
new_clip->ctx_data = ggml_init(params); |
|
if (!new_clip->ctx_data) { |
|
LOG_ERR("%s: ggml_init() failed\n", __func__); |
|
clip_free(new_clip); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
|
|
auto fin = std::ifstream(fname, std::ios::binary); |
|
if (!fin) { |
|
LOG_ERR("cannot open model file for loading tensors\n"); |
|
clip_free(new_clip); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
|
|
|
|
for (int i = 0; i < n_tensors; ++i) { |
|
const char * name = gguf_get_tensor_name(ctx, i); |
|
struct ggml_tensor * t = ggml_get_tensor(meta, name); |
|
struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t); |
|
ggml_set_name(cur, name); |
|
} |
|
|
|
|
|
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(new_clip->backend); |
|
new_clip->buf = ggml_backend_alloc_ctx_tensors_from_buft(new_clip->ctx_data, buft); |
|
ggml_backend_buffer_set_usage(new_clip->buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); |
|
for (int i = 0; i < n_tensors; ++i) { |
|
const char * name = gguf_get_tensor_name(ctx, i); |
|
struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name); |
|
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i); |
|
fin.seekg(offset, std::ios::beg); |
|
if (!fin) { |
|
LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name); |
|
clip_free(new_clip); |
|
gguf_free(ctx); |
|
return nullptr; |
|
} |
|
int num_bytes = ggml_nbytes(cur); |
|
if (ggml_backend_buft_is_host(buft)) { |
|
|
|
fin.read(reinterpret_cast<char *>(cur->data), num_bytes); |
|
} else { |
|
|
|
read_buf.resize(num_bytes); |
|
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes); |
|
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes); |
|
} |
|
} |
|
fin.close(); |
|
} |
|
|
|
|
|
if (new_clip->has_vision_encoder) { |
|
|
|
auto & vision_model = new_clip->vision_model; |
|
auto & hparams = vision_model.hparams; |
|
hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision")); |
|
hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision")); |
|
hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision")); |
|
hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision")); |
|
hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE); |
|
hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE); |
|
hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision")); |
|
hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision")); |
|
|
|
try { |
|
int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS); |
|
int n = gguf_get_arr_n(ctx, idx); |
|
const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx); |
|
for (int i = 0; i < n; ++i) { |
|
hparams.image_grid_pinpoints.push_back(pinpoints[i]); |
|
} |
|
} catch (std::runtime_error & ) { } |
|
|
|
|
|
|
|
|
|
|
|
|
|
try { |
|
int idx = get_key_idx(ctx, KEY_FEATURE_LAYER); |
|
int n = gguf_get_arr_n(ctx, idx); |
|
|
|
const int32_t * vision_feature_layer = (const int32_t *)gguf_get_arr_data(ctx, idx); |
|
|
|
for (int i = 0; i < n; ++i) { |
|
hparams.vision_feature_layer.insert(vision_feature_layer[i]); |
|
} |
|
} catch (std::runtime_error & ) { } |
|
|
|
try { |
|
int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE); |
|
strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx)); |
|
} catch (std::runtime_error & ) { |
|
strcpy(hparams.mm_patch_merge_type, "flat"); |
|
} |
|
|
|
try { |
|
hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); |
|
} catch(const std::exception& ) { |
|
hparams.image_crop_resolution = hparams.image_size; |
|
} |
|
|
|
int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN); |
|
int idx_std = get_key_idx(ctx, KEY_IMAGE_STD); |
|
|
|
const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean); |
|
const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std); |
|
|
|
for (int i = 0; i < 3; ++i) { |
|
new_clip->image_mean[i] = mean_data[i]; |
|
new_clip->image_std[i] = std_data[i]; |
|
} |
|
|
|
|
|
new_clip->max_feature_layer = get_deepest_feature_layer(new_clip); |
|
|
|
if (verbosity >= 2) { |
|
LOG_INF("\n%s: vision model hparams\n", __func__); |
|
LOG_INF("image_size %d\n", hparams.image_size); |
|
LOG_INF("patch_size %d\n", hparams.patch_size); |
|
LOG_INF("v_hidden_size %d\n", hparams.hidden_size); |
|
LOG_INF("v_n_intermediate %d\n", hparams.n_intermediate); |
|
LOG_INF("v_projection_dim %d\n", hparams.projection_dim); |
|
LOG_INF("v_n_head %d\n", hparams.n_head); |
|
LOG_INF("v_n_layer %d\n", hparams.n_layer); |
|
LOG_INF("v_eps %f\n", hparams.eps); |
|
LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]); |
|
LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]); |
|
LOG_INF("v_image_grid_pinpoints: "); |
|
for (const auto & pp : hparams.image_grid_pinpoints) { |
|
LOG_INF("%d ", pp); |
|
} |
|
LOG_INF("\n"); |
|
LOG_INF("v_vision_feature_layer: "); |
|
for (const auto & feature_layer: hparams.vision_feature_layer) { |
|
LOG_INF("%d ", feature_layer); |
|
} |
|
LOG_INF("\n"); |
|
LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type); |
|
|
|
} |
|
|
|
try { |
|
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD); |
|
new_clip->has_class_embedding = true; |
|
} catch (const std::exception& ) { |
|
new_clip->has_class_embedding = false; |
|
} |
|
|
|
try { |
|
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight")); |
|
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias")); |
|
new_clip->has_pre_norm = true; |
|
} catch (std::exception & ) { |
|
new_clip->has_pre_norm = false; |
|
} |
|
|
|
try { |
|
vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight")); |
|
vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias")); |
|
new_clip->has_post_norm = true; |
|
} catch (std::exception & ) { |
|
new_clip->has_post_norm = false; |
|
} |
|
|
|
try { |
|
vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS); |
|
new_clip->has_patch_bias = true; |
|
} catch (std::exception & ) { |
|
new_clip->has_patch_bias = false; |
|
} |
|
|
|
try { |
|
vision_model.patch_embeddings_0 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD); |
|
} catch(const std::exception& ) { |
|
vision_model.patch_embeddings_0 = nullptr; |
|
} |
|
|
|
try { |
|
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); |
|
} catch(const std::exception& ) { |
|
vision_model.position_embeddings = nullptr; |
|
} |
|
|
|
try { |
|
vision_model.patch_embeddings_1 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD_1); |
|
} catch(const std::exception& ) { |
|
new_clip->has_qwen2vl_merger = false; |
|
} |
|
|
|
|
|
if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) { |
|
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight")); |
|
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias")); |
|
try { |
|
|
|
vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight")); |
|
vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias")); |
|
} catch (std::runtime_error & ) { } |
|
try { |
|
|
|
vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); |
|
vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); |
|
} catch (std::runtime_error & ) { } |
|
try { |
|
|
|
vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight")); |
|
vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias")); |
|
} catch (std::runtime_error & ) { } |
|
try { |
|
|
|
vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight")); |
|
vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias")); |
|
} catch (std::runtime_error & ) { } |
|
try { |
|
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE); |
|
|
|
} catch (std::runtime_error & ) { } |
|
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) { |
|
|
|
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight")); |
|
vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias")); |
|
vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight")); |
|
vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias")); |
|
vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight")); |
|
vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight")); |
|
vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias")); |
|
vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight")); |
|
vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias")); |
|
vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight")); |
|
vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias")); |
|
vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight")); |
|
vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight")); |
|
vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias")); |
|
vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight")); |
|
vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight")); |
|
vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias")); |
|
vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight")); |
|
vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias")); |
|
vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight")); |
|
vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias")); |
|
vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); |
|
vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); |
|
vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); |
|
} |
|
else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2) |
|
{ |
|
|
|
vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight")); |
|
vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias")); |
|
vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight")); |
|
vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias")); |
|
vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight")); |
|
vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias")); |
|
} |
|
else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) { |
|
|
|
vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K); |
|
vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY); |
|
vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ); |
|
vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ); |
|
vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight")); |
|
vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight")); |
|
vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight")); |
|
vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias")); |
|
vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias")); |
|
vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias")); |
|
vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight")); |
|
vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias")); |
|
vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight")); |
|
vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias")); |
|
vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight")); |
|
vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias")); |
|
vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight")); |
|
vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias")); |
|
} |
|
else if (new_clip->proj_type == PROJECTOR_TYPE_GLM_EDGE) { |
|
vision_model.mm_model_adapter_conv_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "weight")); |
|
vision_model.mm_model_adapter_conv_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPER_CONV, "bias")); |
|
vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_LINEAR,"weight")); |
|
vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"weight")); |
|
vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_NORM_1,"bias")); |
|
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_H_2_4H,"weight")); |
|
vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_GATE,"weight")); |
|
vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_GLM_ADAPTER_D_4H_2_H,"weight")); |
|
vision_model.boi_w = get_tensor(new_clip->ctx_data, TN_GLM_BOI_W); |
|
vision_model.eoi_w = get_tensor(new_clip->ctx_data, TN_GLM_EOI_W); |
|
} |
|
else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) { |
|
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight")); |
|
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias")); |
|
vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); |
|
vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); |
|
} |
|
else if (new_clip->proj_type == PROJECTOR_TYPE_GEMMA3) { |
|
vision_model.mm_input_proj_w = get_tensor(new_clip->ctx_data, TN_MM_INP_PROJ); |
|
vision_model.mm_soft_emb_norm_w = get_tensor(new_clip->ctx_data, TN_MM_SOFT_EMB_N); |
|
} |
|
else { |
|
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type]; |
|
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); |
|
} |
|
|
|
vision_model.layers.resize(hparams.n_layer); |
|
|
|
for (int il = 0; il < hparams.n_layer; ++il) { |
|
auto & layer = vision_model.layers[il]; |
|
layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight")); |
|
layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight")); |
|
layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight")); |
|
layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight")); |
|
layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight")); |
|
layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight")); |
|
layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight")); |
|
layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight")); |
|
layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias")); |
|
layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias")); |
|
layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias")); |
|
layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias")); |
|
layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias")); |
|
layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias")); |
|
layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias")); |
|
layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias")); |
|
} |
|
} |
|
|
|
ggml_free(meta); |
|
|
|
new_clip->ctx_gguf = ctx; |
|
|
|
|
|
{ |
|
new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead()); |
|
clip_image_f32_batch batch; |
|
batch.size = 1; |
|
batch.data = nullptr; |
|
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false); |
|
ggml_backend_sched_reserve(new_clip->sched.get(), gf); |
|
for (size_t i = 0; i < new_clip->backend_ptrs.size(); ++i) { |
|
ggml_backend_t backend = new_clip->backend_ptrs[i]; |
|
ggml_backend_buffer_type_t buft = new_clip->backend_buft[i]; |
|
size_t size = ggml_backend_sched_get_buffer_size(new_clip->sched.get(), backend); |
|
if (size > 1) { |
|
LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__, |
|
ggml_backend_buft_name(buft), |
|
size / 1024.0 / 1024.0); |
|
} |
|
} |
|
} |
|
|
|
return new_clip; |
|
} |
|
|
|
void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) { |
|
ctx_clip->load_image_size = load_image_size; |
|
} |
|
|
|
struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) { |
|
return ctx_clip->load_image_size; |
|
} |
|
|
|
struct clip_image_size * clip_image_size_init() { |
|
struct clip_image_size * load_image_size = new struct clip_image_size(); |
|
load_image_size->width = 448; |
|
load_image_size->height = 448; |
|
return load_image_size; |
|
} |
|
|
|
struct clip_image_u8 * clip_image_u8_init() { |
|
return new clip_image_u8(); |
|
} |
|
|
|
struct clip_image_f32 * clip_image_f32_init() { |
|
return new clip_image_f32(); |
|
} |
|
|
|
void clip_image_u8_free(struct clip_image_u8 * img) { delete img; } |
|
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; } |
|
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { |
|
if (batch->size > 0) { |
|
delete[] batch->data; |
|
batch->size = 0; |
|
} |
|
} |
|
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { |
|
if (batch->size > 0) { |
|
delete[] batch->data; |
|
batch->size = 0; |
|
} |
|
} |
|
|
|
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) { |
|
img->nx = nx; |
|
img->ny = ny; |
|
img->buf.resize(3 * nx * ny); |
|
memcpy(img->buf.data(), rgb_pixels, img->buf.size()); |
|
} |
|
|
|
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) { |
|
int nx, ny, nc; |
|
auto * data = stbi_load(fname, &nx, &ny, &nc, 3); |
|
if (!data) { |
|
LOG_ERR("%s: failed to load image '%s'\n", __func__, fname); |
|
return false; |
|
} |
|
clip_build_img_from_pixels(data, nx, ny, img); |
|
stbi_image_free(data); |
|
return true; |
|
} |
|
|
|
|
|
uint8_t* make_new_letterbox_img(uint8_t* input_image, int nx, int ny, int nc, int target_width, int target_height) { |
|
int new_image_size = target_width * target_height * nc; |
|
uint8_t* letterboxed_image = (uint8_t*)malloc(new_image_size); |
|
if(letterboxed_image==nullptr) |
|
{ |
|
printf("\nWARNING: make_new_letterbox_img MALLOC FAILED\n"); |
|
return nullptr; |
|
} |
|
memset(letterboxed_image, 0, new_image_size); |
|
int offset_x = (target_width - nx) / 2; |
|
int offset_y = (target_height - ny) / 2; |
|
for (int y = 0; y < ny; ++y) { |
|
memcpy( |
|
letterboxed_image + ((y + offset_y) * target_width + offset_x) * nc, |
|
input_image + (y * nx * nc), |
|
nx * nc |
|
); |
|
} |
|
return letterboxed_image; |
|
} |
|
uint8_t* scale_down_image(uint8_t* input_image, int& nx, int& ny, int nc, int max_width, int max_height) { |
|
float aspect_ratio = static_cast<float>(nx) / ny; |
|
int new_width = nx; |
|
int new_height = ny; |
|
if (nx > max_width || ny > max_height) { |
|
if (aspect_ratio > 1.0f) { |
|
new_width = max_width; |
|
new_height = static_cast<int>(max_width / aspect_ratio); |
|
} else { |
|
new_height = max_height; |
|
new_width = static_cast<int>(max_height * aspect_ratio); |
|
} |
|
} |
|
uint8_t* resized_image = (uint8_t*)malloc(new_width * new_height * nc); |
|
int resok = stbir_resize_uint8(input_image, nx, ny, 0, resized_image, new_width, new_height, 0, nc); |
|
if (!resok) { |
|
printf("\nKCPP SD: clip resize image failed!\n"); |
|
free(resized_image); |
|
return nullptr; |
|
} |
|
nx = new_width; |
|
ny = new_height; |
|
return resized_image; |
|
} |
|
|
|
bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img, const int maxdims) { |
|
int nx, ny, nc; |
|
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3); |
|
if (!data) { |
|
LOG_ERR("%s: failed to decode image bytes\n", __func__); |
|
return false; |
|
} |
|
|
|
float maxaspect = 4.0f; |
|
|
|
|
|
if (nx > maxdims || ny > maxdims) { |
|
printf("\nImage requires resizing: original size %d x %d scaling to max %d px\n",nx,ny,maxdims); |
|
uint8_t* resized_image = scale_down_image(data, nx, ny, nc, maxdims, maxdims); |
|
if(resized_image!=nullptr) |
|
{ |
|
stbi_image_free(data); |
|
data = resized_image; |
|
printf("Resized to clamped to %d x %d\n",nx,ny); |
|
} |
|
} |
|
|
|
float aspect_ratio = static_cast<float>(nx) / ny; |
|
int new_width = nx; |
|
int new_height = ny; |
|
bool need_letterbox = false; |
|
|
|
if (aspect_ratio > maxaspect) { |
|
new_height = (int)(nx / maxaspect); |
|
need_letterbox = true; |
|
} else if (aspect_ratio < 1.0f / maxaspect) { |
|
new_width = (int)(ny / maxaspect); |
|
need_letterbox = true; |
|
} |
|
|
|
if (need_letterbox) { |
|
printf("\nImage requires letterboxing: %d x %d changed to %d x %d\n",nx,ny,new_width, new_height); |
|
uint8_t* letterboxed_image = make_new_letterbox_img(data, nx, ny, nc, new_width, new_height); |
|
if(letterboxed_image!=nullptr) |
|
{ |
|
clip_build_img_from_pixels(letterboxed_image, new_width, new_height, img); |
|
free(letterboxed_image); |
|
letterboxed_image = nullptr; |
|
} |
|
} |
|
else |
|
{ |
|
clip_build_img_from_pixels(data, nx, ny, img); |
|
} |
|
stbi_image_free(data); |
|
return true; |
|
} |
|
|
|
|
|
inline float clip_lerp(float s, float e, float t) { |
|
return s + (e - s) * t; |
|
} |
|
|
|
static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) { |
|
dst.nx = target_width; |
|
dst.ny = target_height; |
|
dst.buf.resize(3 * target_width * target_height); |
|
|
|
float x_ratio = static_cast<float>(src.nx - 1) / target_width; |
|
float y_ratio = static_cast<float>(src.ny - 1) / target_height; |
|
|
|
for (int y = 0; y < target_height; y++) { |
|
for (int x = 0; x < target_width; x++) { |
|
float px = x_ratio * x; |
|
float py = y_ratio * y; |
|
int x_floor = static_cast<int>(px); |
|
int y_floor = static_cast<int>(py); |
|
float x_lerp = px - x_floor; |
|
float y_lerp = py - y_floor; |
|
|
|
for (int c = 0; c < 3; c++) { |
|
float top = clip_lerp( |
|
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]), |
|
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]), |
|
x_lerp |
|
); |
|
float bottom = clip_lerp( |
|
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]), |
|
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]), |
|
x_lerp |
|
); |
|
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) { |
|
dst->nx = src->nx; |
|
dst->ny = src->ny; |
|
dst->buf.resize(src->buf.size()); |
|
|
|
for (size_t i = 0; i < src->buf.size(); ++i) { |
|
int c = i % 3; |
|
dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c]; |
|
} |
|
} |
|
|
|
inline int clip(int x, int lower, int upper) { |
|
return std::max(lower, std::min(x, upper)); |
|
} |
|
|
|
static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) { |
|
const int nx = img.nx; |
|
const int ny = img.ny; |
|
|
|
dst.nx = target_width; |
|
dst.ny = target_height; |
|
dst.buf.resize(3 * target_width * target_height); |
|
|
|
float Cc; |
|
float C[5]; |
|
float d0, d2, d3, a0, a1, a2, a3; |
|
int i, j, k, jj; |
|
int x, y; |
|
float dx, dy; |
|
float tx, ty; |
|
|
|
tx = (float)nx / (float)target_width; |
|
ty = (float)ny / (float)target_height; |
|
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < target_height; i++) { |
|
for (j = 0; j < target_width; j++) { |
|
x = (int)(tx * j); |
|
y = (int)(ty * i); |
|
|
|
dx = tx * j - x; |
|
dy = ty * i - y; |
|
|
|
for (k = 0; k < 3; k++) { |
|
for (jj = 0; jj <= 3; jj++) { |
|
d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; |
|
d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; |
|
d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; |
|
a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; |
|
|
|
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; |
|
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; |
|
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; |
|
|
|
C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx; |
|
|
|
d0 = C[0] - C[1]; |
|
d2 = C[2] - C[1]; |
|
d3 = C[3] - C[1]; |
|
a0 = C[1]; |
|
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; |
|
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; |
|
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; |
|
Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy; |
|
|
|
const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f); |
|
dst.buf[(i * target_width + j) * 3 + k] = float(Cc2); |
|
} |
|
} |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) { |
|
int target_width = target_resolution.first; |
|
int target_height = target_resolution.second; |
|
|
|
float scale_w = static_cast<float>(target_width) / image.nx; |
|
float scale_h = static_cast<float>(target_height) / image.ny; |
|
|
|
int new_width, new_height; |
|
|
|
if (scale_w < scale_h) { |
|
new_width = target_width; |
|
new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height); |
|
} else { |
|
new_height = target_height; |
|
new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width); |
|
} |
|
|
|
clip_image_u8 resized_image; |
|
|
|
bicubic_resize(image, resized_image, new_width, new_height); |
|
|
|
clip_image_u8 padded_image; |
|
padded_image.nx = target_width; |
|
padded_image.ny = target_height; |
|
padded_image.buf.resize(3 * target_width * target_height, 0); |
|
|
|
|
|
int pad_x = (target_width - new_width) / 2; |
|
int pad_y = (target_height - new_height) / 2; |
|
|
|
|
|
for (int y = 0; y < new_height; ++y) { |
|
for (int x = 0; x < new_width; ++x) { |
|
for (int c = 0; c < 3; ++c) { |
|
padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c]; |
|
} |
|
} |
|
} |
|
image_output = std::move(padded_image); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) { |
|
int original_width = original_size.first; |
|
int original_height = original_size.second; |
|
std::pair<int, int> best_fit; |
|
int max_effective_resolution = 0; |
|
int min_wasted_resolution = std::numeric_limits<int>::max(); |
|
|
|
for (const auto& resolution : possible_resolutions) { |
|
int width = resolution.first; |
|
int height = resolution.second; |
|
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height); |
|
int downscaled_width = static_cast<int>(original_width * scale); |
|
int downscaled_height = static_cast<int>(original_height * scale); |
|
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); |
|
int wasted_resolution = (width * height) - effective_resolution; |
|
|
|
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { |
|
max_effective_resolution = effective_resolution; |
|
min_wasted_resolution = wasted_resolution; |
|
best_fit = resolution; |
|
} |
|
} |
|
|
|
return best_fit; |
|
} |
|
|
|
static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) { |
|
std::vector<clip_image_u8*> patches; |
|
int width = image.nx; |
|
int height = image.ny; |
|
for (int i = 0; i < height; i += patch_size) { |
|
for (int j = 0; j < width; j += patch_size) { |
|
clip_image_u8 *patch = clip_image_u8_init(); |
|
patch->nx = std::min(patch_size, width - j); |
|
patch->ny = std::min(patch_size, height - i); |
|
patch->buf.resize(3 * patch->nx * patch->ny); |
|
for (int y = 0; y < patch->ny; ++y) { |
|
for (int x = 0; x < patch->nx; ++x) { |
|
for (int c = 0; c < 3; ++c) { |
|
patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c]; |
|
} |
|
} |
|
} |
|
patches.push_back(patch); |
|
} |
|
} |
|
return patches; |
|
} |
|
|
|
static int ensure_divide(int length, int patch_size) { |
|
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size); |
|
} |
|
|
|
static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) { |
|
int width = original_size.first; |
|
int height = original_size.second; |
|
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) { |
|
float r = static_cast<float>(width) / height; |
|
height = static_cast<int>(scale_resolution / std::sqrt(r)); |
|
width = static_cast<int>(height * r); |
|
} |
|
int best_width = ensure_divide(width, patch_size); |
|
int best_height = ensure_divide(height, patch_size); |
|
return std::make_pair(best_width, best_height); |
|
} |
|
|
|
static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) { |
|
int width, height; |
|
std::tie(width, height) = original_size; |
|
int grid_x, grid_y; |
|
std::tie(grid_x, grid_y) = grid; |
|
|
|
int refine_width = ensure_divide(width, grid_x); |
|
int refine_height = ensure_divide(height, grid_y); |
|
|
|
int grid_width = refine_width / grid_x; |
|
int grid_height = refine_height / grid_y; |
|
|
|
|
|
auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); |
|
int best_grid_width, best_grid_height; |
|
std::tie(best_grid_width, best_grid_height) = best_grid_size; |
|
|
|
|
|
std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); |
|
return refine_size; |
|
} |
|
|
|
static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) { |
|
std::vector<int> candidate_split_grids_nums; |
|
for (int i : {multiple - 1, multiple, multiple + 1}) { |
|
if (i == 1 || i > max_slice_nums) { |
|
continue; |
|
} |
|
candidate_split_grids_nums.push_back(i); |
|
} |
|
|
|
std::vector<std::pair<int, int>> candidate_grids; |
|
for (int split_grids_nums : candidate_split_grids_nums) { |
|
int m = 1; |
|
while (m <= split_grids_nums) { |
|
if (split_grids_nums % m == 0) { |
|
candidate_grids.emplace_back(m, split_grids_nums / m); |
|
} |
|
++m; |
|
} |
|
} |
|
|
|
std::pair<int, int> best_grid{1, 1}; |
|
float min_error = std::numeric_limits<float>::infinity(); |
|
for (const auto& grid : candidate_grids) { |
|
float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second)); |
|
if (error < min_error) { |
|
best_grid = grid; |
|
min_error = error; |
|
} |
|
} |
|
return best_grid; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) { |
|
const std::pair<int, int> original_size={img->nx,img->ny}; |
|
const int original_width = img->nx; |
|
const int original_height = img->ny; |
|
const float log_ratio = log(1.0*original_width/original_height); |
|
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); |
|
const int multiple = fmin(ceil(ratio), max_slice_nums); |
|
|
|
std::vector<std::vector<clip_image_u8 *>> images; |
|
LOG_INF("%s: multiple %d\n", __func__, multiple); |
|
images.push_back(std::vector<clip_image_u8 *>()); |
|
|
|
if (multiple <= 1) { |
|
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true); |
|
clip_image_u8 * source_image = clip_image_u8_init(); |
|
bicubic_resize(*img, *source_image, best_size.first, best_size.second); |
|
|
|
images[images.size()-1].push_back(source_image); |
|
} |
|
else if (multiple > 1) { |
|
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size); |
|
clip_image_u8 * source_image = clip_image_u8_init(); |
|
bicubic_resize(*img, *source_image, best_size.first, best_size.second); |
|
|
|
LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second); |
|
images[images.size()-1].push_back(source_image); |
|
|
|
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio); |
|
LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second); |
|
|
|
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true); |
|
clip_image_u8 * refine_image = clip_image_u8_init(); |
|
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second); |
|
|
|
LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second); |
|
|
|
|
|
int width = refine_image->nx; |
|
int height = refine_image->ny; |
|
int grid_x = int(width / best_grid.first); |
|
int grid_y = int(height / best_grid.second); |
|
for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){ |
|
images.push_back(std::vector<clip_image_u8 *>()); |
|
for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){ |
|
clip_image_u8 * patch = clip_image_u8_init(); |
|
patch->nx = grid_x; |
|
patch->ny = grid_y; |
|
patch->buf.resize(3 * patch->nx * patch->ny); |
|
for (int y = patches_i; y < patches_i + grid_y; ++y) { |
|
for (int x = patches_j; x < patches_j + grid_x; ++x) { |
|
const int i = 3 * (y * refine_image->nx + x); |
|
const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j)); |
|
patch->buf[j] = refine_image->buf[i]; |
|
patch->buf[j+1] = refine_image->buf[i+1]; |
|
patch->buf[j+2] = refine_image->buf[i+2]; |
|
} |
|
} |
|
images[images.size()-1].push_back(patch); |
|
} |
|
} |
|
clip_image_u8_free(refine_image); |
|
} |
|
return images; |
|
} |
|
|
|
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) { |
|
const int max_slice_nums=9; |
|
const int scale_resolution=448; |
|
const int original_width = ctx_clip->load_image_size->width; |
|
const int original_height = ctx_clip->load_image_size->height; |
|
const float log_ratio = log(1.0*original_width/original_height); |
|
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); |
|
const int multiple = fmin(ceil(ratio), max_slice_nums); |
|
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio); |
|
return best_grid.first; |
|
} |
|
|
|
|
|
|
|
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) { |
|
|
|
if(clip_is_minicpmv(ctx)){ |
|
int max_slice_nums = 9; |
|
std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums); |
|
res_imgs->size = 0; |
|
for (size_t i = 0; i < imgs.size(); ++i){ |
|
res_imgs->size += imgs[i].size(); |
|
} |
|
res_imgs->data = new clip_image_f32[res_imgs->size]; |
|
int idx = 0; |
|
for (size_t i = 0; i < imgs.size(); ++i) { |
|
for (size_t j = 0; j < imgs[i].size(); ++j) { |
|
LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny); |
|
clip_image_f32 * res = clip_image_f32_init(); |
|
normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std); |
|
res_imgs->data[idx++] = *res; |
|
clip_image_f32_free(res); |
|
} |
|
} |
|
for (size_t i = 0; i < imgs.size(); ++i) { |
|
for (size_t j = 0; j < imgs[i].size(); ++j) { |
|
if (imgs[i][j] != nullptr) { |
|
clip_image_u8_free(imgs[i][j]); |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
else if (ctx->has_qwen2vl_merger) { |
|
clip_image_u8 * resized = clip_image_u8_init(); |
|
auto patch_size = clip_patch_size(ctx) * 2; |
|
int nx = ceil((float)img->nx / patch_size) * patch_size; |
|
int ny = ceil((float)img->ny / patch_size) * patch_size; |
|
bicubic_resize(*img, *resized, nx, ny); |
|
|
|
res_imgs->data = new clip_image_f32[1]; |
|
|
|
normalize_image_u8_to_f32(resized, res_imgs->data, ctx->image_mean, ctx->image_std); |
|
|
|
res_imgs->size = 1; |
|
|
|
|
|
clip_image_u8_free(resized); |
|
return true; |
|
} |
|
|
|
if (ctx->has_glm_projector || ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { |
|
res_imgs->size = 1; |
|
res_imgs->data = new clip_image_f32[res_imgs->size]; |
|
clip_image_u8 resized_image; |
|
int32_t sz=ctx->vision_model.hparams.image_size; |
|
bicubic_resize(*img, resized_image,sz,sz); |
|
clip_image_f32 * res = clip_image_f32_init(); |
|
|
|
normalize_image_u8_to_f32(&resized_image, res, ctx->image_mean, ctx->image_std); |
|
res_imgs->data[0] = *res; |
|
clip_image_f32_free(res); |
|
return true; |
|
} |
|
|
|
bool pad_to_square = true; |
|
if (!ctx->has_vision_encoder) { |
|
LOG_ERR("This gguf file seems to have no vision encoder\n"); |
|
return false; |
|
} |
|
auto & params = ctx->vision_model.hparams; |
|
|
|
if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) { |
|
pad_to_square = false; |
|
} |
|
|
|
if (res_imgs->size > 0) { |
|
clip_image_f32_batch_free(res_imgs); |
|
} |
|
res_imgs->data = nullptr; |
|
res_imgs->size = 0; |
|
|
|
|
|
|
|
|
|
clip_image_u8 * temp = clip_image_u8_init(); |
|
if (pad_to_square && img->nx != img->ny) { |
|
int longer_side = std::max(img->nx, img->ny); |
|
temp->nx = longer_side; |
|
temp->ny = longer_side; |
|
temp->buf.resize(3 * longer_side * longer_side); |
|
const uint8_t bc[3] = {122, 116, 104}; |
|
|
|
|
|
for (size_t i = 0; i < temp->buf.size(); i++) { |
|
temp->buf[i] = bc[i % 3]; |
|
} |
|
|
|
|
|
for (int y = 0; y < img->ny; y++) { |
|
for (int x = 0; x < img->nx; x++) { |
|
const int i = 3 * (y * img->nx + x); |
|
const int j = 3 * (y * temp->nx + x); |
|
temp->buf[j] = img->buf[i]; |
|
temp->buf[j+1] = img->buf[i+1]; |
|
temp->buf[j+2] = img->buf[i+2]; |
|
} |
|
} |
|
} else { |
|
if (!params.image_grid_pinpoints.empty()) { |
|
|
|
std::vector<std::pair<int, int>> possible_resolutions; |
|
for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) { |
|
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]}); |
|
} |
|
std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions); |
|
|
|
resize_and_pad_image(*img, *temp, best_resolution); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); |
|
|
|
clip_image_u8 *image_original_resize = clip_image_u8_init(); |
|
|
|
bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); |
|
patches.insert(patches.begin(), image_original_resize); |
|
|
|
res_imgs->size = patches.size(); |
|
res_imgs->data = new clip_image_f32[res_imgs->size]; |
|
int num=0; |
|
for (auto& patch : patches) { |
|
normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std); |
|
num++; |
|
} |
|
|
|
for (size_t i = 0; i < patches.size(); i++) { |
|
|
|
clip_image_u8_free(patches[i]); |
|
} |
|
|
|
clip_image_u8_free(temp); |
|
|
|
return true; |
|
} else { |
|
temp->nx = img->nx; |
|
temp->ny = img->ny; |
|
temp->buf.resize(img->buf.size()); |
|
memcpy(temp->buf.data(), img->buf.data(), temp->buf.size()); |
|
} |
|
} |
|
|
|
const int nx = temp->nx; |
|
const int ny = temp->ny; |
|
|
|
|
|
const int nx2 = ctx->vision_model.hparams.image_size; |
|
const int ny2 = ctx->vision_model.hparams.image_size; |
|
clip_image_f32 * res = clip_image_f32_init(); |
|
res->nx = nx2; |
|
res->ny = ny2; |
|
res->buf.resize(3 * nx2 * ny2); |
|
|
|
const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size; |
|
|
|
const int nx3 = int(nx / scale + 0.5f); |
|
const int ny3 = int(ny / scale + 0.5f); |
|
|
|
const auto & m3 = ctx->image_mean; |
|
const auto & s3 = ctx->image_std; |
|
|
|
for (int y = 0; y < ny3; y++) { |
|
for (int x = 0; x < nx3; x++) { |
|
for (int c = 0; c < 3; c++) { |
|
|
|
const float sx = (x + 0.5f) * scale - 0.5f; |
|
const float sy = (y + 0.5f) * scale - 0.5f; |
|
|
|
const int x0 = std::max(0, (int)std::floor(sx)); |
|
const int y0 = std::max(0, (int)std::floor(sy)); |
|
|
|
const int x1 = std::min(x0 + 1, nx - 1); |
|
const int y1 = std::min(y0 + 1, ny - 1); |
|
|
|
const float dx = sx - x0; |
|
const float dy = sy - y0; |
|
|
|
const int j00 = 3 * (y0 * nx + x0) + c; |
|
const int j01 = 3 * (y0 * nx + x1) + c; |
|
const int j10 = 3 * (y1 * nx + x0) + c; |
|
const int j11 = 3 * (y1 * nx + x1) + c; |
|
|
|
const float v00 = temp->buf[j00]; |
|
const float v01 = temp->buf[j01]; |
|
const float v10 = temp->buf[j10]; |
|
const float v11 = temp->buf[j11]; |
|
|
|
const float v0 = v00 * (1.0f - dx) + v01 * dx; |
|
const float v1 = v10 * (1.0f - dx) + v11 * dx; |
|
|
|
const float v = v0 * (1.0f - dy) + v1 * dy; |
|
|
|
const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f); |
|
|
|
const int i = 3 * (y * nx3 + x) + c; |
|
|
|
res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c]; |
|
} |
|
} |
|
} |
|
clip_image_u8_free(temp); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
res_imgs->size = 1; |
|
res_imgs->data = new clip_image_f32[res_imgs->size]; |
|
res_imgs->data[0] = *res; |
|
clip_image_f32_free(res); |
|
|
|
return true; |
|
} |
|
|
|
ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) { |
|
return ctx->vision_model.image_newline; |
|
} |
|
|
|
void clip_free(clip_ctx * ctx) { |
|
delete ctx; |
|
} |
|
|
|
size_t clip_embd_nbytes(const struct clip_ctx * ctx) { |
|
int extra_tokens = ctx->has_glm_projector ? 2 : 0; |
|
return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float); |
|
} |
|
|
|
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) { |
|
clip_image_f32 img; |
|
img.nx = img_w; |
|
img.ny = img_h; |
|
return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float); |
|
} |
|
|
|
int32_t clip_image_size(const struct clip_ctx * ctx) { |
|
return ctx->vision_model.hparams.image_size; |
|
} |
|
|
|
int32_t clip_patch_size(const struct clip_ctx * ctx) { |
|
return ctx->vision_model.hparams.patch_size; |
|
} |
|
|
|
int32_t clip_hidden_size(const struct clip_ctx * ctx) { |
|
return ctx->vision_model.hparams.hidden_size; |
|
} |
|
|
|
const char * clip_patch_merge_type(const struct clip_ctx * ctx) { |
|
return ctx->vision_model.hparams.mm_patch_merge_type; |
|
} |
|
|
|
const int32_t * clip_image_grid(const struct clip_ctx * ctx) { |
|
if (ctx->vision_model.hparams.image_grid_pinpoints.size()) { |
|
return &ctx->vision_model.hparams.image_grid_pinpoints.front(); |
|
} |
|
return nullptr; |
|
} |
|
|
|
size_t get_clip_image_grid_size(const struct clip_ctx * ctx) { |
|
return ctx->vision_model.hparams.image_grid_pinpoints.size(); |
|
} |
|
|
|
int clip_n_patches(const struct clip_ctx * ctx) { |
|
clip_image_f32 img; |
|
img.nx = ctx->vision_model.hparams.image_size; |
|
img.ny = ctx->vision_model.hparams.image_size; |
|
return clip_n_patches_by_img(ctx, &img); |
|
} |
|
|
|
int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) { |
|
const auto & params = ctx->vision_model.hparams; |
|
|
|
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size); |
|
if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) |
|
{ |
|
n_patches = 256; |
|
} |
|
|
|
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) { |
|
n_patches /= 4; |
|
} else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { |
|
if (ctx->minicpmv_version == 2) { |
|
n_patches = 96; |
|
} |
|
else if (ctx->minicpmv_version == 3) { |
|
n_patches = 64; |
|
} |
|
else if (ctx->minicpmv_version == 4) { |
|
n_patches = 64; |
|
} |
|
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) { |
|
int patch_size = params.patch_size * 2; |
|
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0); |
|
int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0); |
|
n_patches = x_patch * y_patch; |
|
} |
|
|
|
return n_patches; |
|
} |
|
|
|
static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) { |
|
assert(embed_dim % 2 == 0); |
|
int H = pos.size(); |
|
int W = pos[0].size(); |
|
|
|
std::vector<float> omega(embed_dim / 2); |
|
for (int i = 0; i < embed_dim / 2; ++i) { |
|
omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2)); |
|
} |
|
|
|
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim))); |
|
for (int h = 0; h < H; ++h) { |
|
for (int w = 0; w < W; ++w) { |
|
for (int d = 0; d < embed_dim / 2; ++d) { |
|
float out_value = pos[h][w] * omega[d]; |
|
emb[h][w][d] = sin(out_value); |
|
emb[h][w][d + embed_dim / 2] = cos(out_value); |
|
} |
|
} |
|
} |
|
|
|
return emb; |
|
} |
|
|
|
static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) { |
|
assert(embed_dim % 2 == 0); |
|
std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); |
|
std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); |
|
|
|
int H = emb_h.size(); |
|
int W = emb_h[0].size(); |
|
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim))); |
|
|
|
for (int h = 0; h < H; ++h) { |
|
for (int w = 0; w < W; ++w) { |
|
for (int d = 0; d < embed_dim / 2; ++d) { |
|
emb[h][w][d] = emb_h[h][w][d]; |
|
emb[h][w][d + embed_dim / 2] = emb_w[h][w][d]; |
|
} |
|
} |
|
} |
|
return emb; |
|
} |
|
|
|
static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) { |
|
int grid_h_size = image_size.first; |
|
int grid_w_size = image_size.second; |
|
|
|
std::vector<float> grid_h(grid_h_size); |
|
std::vector<float> grid_w(grid_w_size); |
|
|
|
for (int i = 0; i < grid_h_size; ++i) { |
|
grid_h[i] = static_cast<float>(i); |
|
} |
|
for (int i = 0; i < grid_w_size; ++i) { |
|
grid_w[i] = static_cast<float>(i); |
|
} |
|
|
|
std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size)); |
|
for (int h = 0; h < grid_h_size; ++h) { |
|
for (int w = 0; w < grid_w_size; ++w) { |
|
grid[h][w] = grid_w[w]; |
|
} |
|
} |
|
std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid}; |
|
for (int h = 0; h < grid_h_size; ++h) { |
|
for (int w = 0; w < grid_w_size; ++w) { |
|
grid_2d[0][h][w] = grid_h[h]; |
|
grid_2d[1][h][w] = grid_w[w]; |
|
} |
|
} |
|
|
|
std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d); |
|
|
|
int H = image_size.first; |
|
int W = image_size.second; |
|
std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim)); |
|
for (int h = 0; h < H; ++h) { |
|
for (int w = 0; w < W; ++w) { |
|
pos_embed_2d[w * H + h] = pos_embed_3d[h][w]; |
|
} |
|
} |
|
|
|
return pos_embed_2d; |
|
} |
|
|
|
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { |
|
if (!ctx->has_vision_encoder) { |
|
LOG_ERR("This gguf file seems to have no vision encoder\n"); |
|
return false; |
|
} |
|
|
|
clip_image_f32_batch imgs{}; |
|
imgs.size = 1; |
|
imgs.data = img; |
|
return clip_image_batch_encode(ctx, n_threads, &imgs, vec); |
|
} |
|
|
|
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) { |
|
if (!ctx->has_vision_encoder) { |
|
LOG_ERR("This gguf file seems to have no vision encoder\n"); |
|
return false; |
|
} |
|
|
|
int batch_size = imgs->size; |
|
if (ctx->has_llava_projector) { |
|
GGML_ASSERT(batch_size == 1); |
|
} |
|
if (ctx->has_minicpmv_projector) { |
|
GGML_ASSERT(batch_size == 1); |
|
} |
|
if (ctx->has_glm_projector) { |
|
GGML_ASSERT(batch_size == 1); |
|
ggml_tensor * boi = ctx->vision_model.boi_w; |
|
ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi)); |
|
vec = (float*)(vec+ggml_nelements(boi)); |
|
} |
|
|
|
|
|
ggml_backend_sched_reset(ctx->sched.get()); |
|
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true); |
|
ggml_backend_sched_alloc_graph(ctx->sched.get(), gf); |
|
|
|
|
|
const auto & model = ctx->vision_model; |
|
const auto & hparams = model.hparams; |
|
|
|
const int image_size = hparams.image_size; |
|
int image_size_width = image_size; |
|
int image_size_height = image_size; |
|
if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) { |
|
image_size_width = imgs->data[0].nx; |
|
image_size_height = imgs->data[0].ny; |
|
} |
|
const int patch_size = hparams.patch_size; |
|
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); |
|
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); |
|
if(ctx->load_image_size==nullptr){ |
|
ctx->load_image_size= clip_image_size_init(); |
|
} |
|
const int pos_w = ctx->load_image_size->width/patch_size; |
|
const int pos_h = ctx->load_image_size->height/patch_size; |
|
|
|
{ |
|
struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw"); |
|
float * data = (float *)malloc(ggml_nbytes(inp_raw)); |
|
|
|
for (size_t i = 0; i < imgs->size; i++) { |
|
const int nx = imgs->data[i].nx; |
|
const int ny = imgs->data[i].ny; |
|
if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) { |
|
GGML_ASSERT(nx == image_size && ny == image_size); |
|
} |
|
|
|
const int n = nx * ny; |
|
|
|
for (int b = 0; b < batch_size; b++) { |
|
for (int k = 0; k < 3; k++) { |
|
for (int y = 0; y < ny; y++) { |
|
for (int x = 0; x < nx; x++) { |
|
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw)); |
|
free(data); |
|
} |
|
if (ctx->has_minicpmv_projector) { |
|
{ |
|
|
|
|
|
|
|
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); |
|
int* positions_data = (int*)malloc(ggml_nbytes(positions)); |
|
int bucket_coords_h[1024]; |
|
int bucket_coords_w[1024]; |
|
for (int i = 0; i < pos_h; i++){ |
|
bucket_coords_h[i] = std::floor(70.0*i/pos_h); |
|
} |
|
for (int i = 0; i < pos_w; i++){ |
|
bucket_coords_w[i] = std::floor(70.0*i/pos_w); |
|
} |
|
for (int i = 0, id = 0; i < pos_h; i++){ |
|
for (int j = 0; j < pos_w; j++){ |
|
positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j]; |
|
} |
|
} |
|
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); |
|
free(positions_data); |
|
} |
|
|
|
{ |
|
|
|
|
|
|
|
struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed"); |
|
int embed_dim = 4096; |
|
if (ctx->minicpmv_version == 2) { |
|
embed_dim = 4096; |
|
} |
|
else if (ctx->minicpmv_version == 3) { |
|
embed_dim = 3584; |
|
} |
|
else if (ctx->minicpmv_version == 4) { |
|
embed_dim = 3584; |
|
} |
|
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h)); |
|
|
|
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed)); |
|
for(int i=0;i < pos_w * pos_h; ++i){ |
|
for(int j=0; j < embed_dim; ++j){ |
|
pos_embed_data[i * embed_dim + j] = pos_embed_t[i][j]; |
|
} |
|
} |
|
|
|
ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed)); |
|
free(pos_embed_data); |
|
} |
|
} |
|
else{ |
|
{ |
|
if (ctx->has_class_embedding) { |
|
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings"); |
|
|
|
void* zero_mem = malloc(ggml_nbytes(embeddings)); |
|
memset(zero_mem, 0, ggml_nbytes(embeddings)); |
|
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings)); |
|
free(zero_mem); |
|
} |
|
} |
|
|
|
if (ctx->has_qwen2vl_merger) { |
|
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); |
|
|
|
const int pw = image_size_width / patch_size; |
|
const int ph = image_size_height / patch_size; |
|
int* positions_data = (int*)malloc(ggml_nbytes(positions)); |
|
|
|
int ptr = 0; |
|
for (int y = 0; y < ph; y+=2) |
|
{ |
|
for (int x = 0; x < pw; x+=2) |
|
{ |
|
for (int dy = 0; dy < 2; dy++) { |
|
for (int dx = 0; dx < 2; dx++) { |
|
positions_data[ptr] = y + dy; |
|
positions_data[num_patches + ptr] = x + dx; |
|
positions_data[num_patches * 2 + ptr] = y + dy; |
|
positions_data[num_patches * 3 + ptr] = x + dx; |
|
ptr++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); |
|
free(positions_data); |
|
} |
|
else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { |
|
|
|
} |
|
else { |
|
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); |
|
|
|
int* positions_data = (int*)malloc(ggml_nbytes(positions)); |
|
for (int i = 0; i < num_positions; i++) { |
|
positions_data[i] = i; |
|
} |
|
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); |
|
free(positions_data); |
|
|
|
if (!ctx->has_glm_projector) { |
|
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); |
|
|
|
|
|
|
|
int patch_offset = ctx->has_class_embedding ? 1 : 0; |
|
int* patches_data = (int*)malloc(ggml_nbytes(patches)); |
|
for (int i = 0; i < num_patches; i++) { |
|
patches_data[i] = i + patch_offset; |
|
} |
|
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); |
|
free(patches_data); |
|
} |
|
} |
|
} |
|
|
|
if (ggml_backend_is_cpu(ctx->backend)) { |
|
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads); |
|
} |
|
|
|
auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf); |
|
if (status != GGML_STATUS_SUCCESS) { |
|
LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status); |
|
return false; |
|
} |
|
|
|
|
|
struct ggml_tensor * embeddings = ggml_graph_node(gf, -1); |
|
|
|
|
|
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings)); |
|
|
|
if (ctx->has_glm_projector) { |
|
|
|
ggml_tensor * eoi = ctx->vision_model.eoi_w; |
|
int offset = ggml_nelements(embeddings); |
|
ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi)); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool avoid_problematic_indivisible = true; |
|
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) { |
|
assert(itype < GGML_TYPE_COUNT); |
|
ggml_type type = static_cast<ggml_type>(itype); |
|
|
|
auto * ctx_clip = clip_model_load(fname_inp, 2); |
|
|
|
const auto & ctx_src = ctx_clip->ctx_gguf; |
|
const auto & ctx_data = ctx_clip->ctx_data; |
|
|
|
auto * ctx_out = gguf_init_empty(); |
|
gguf_set_kv(ctx_out, ctx_src); |
|
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); |
|
gguf_set_val_u32(ctx_out, "general.file_type", itype); |
|
|
|
auto fout = std::ofstream(fname_out, std::ios::binary); |
|
|
|
const int n_tensors = gguf_get_n_tensors(ctx_src); |
|
|
|
for (int i = 0; i < n_tensors; ++i) { |
|
const char * name = gguf_get_tensor_name(ctx_src, i); |
|
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); |
|
gguf_add_tensor(ctx_out, cur); |
|
} |
|
|
|
const size_t meta_size = gguf_get_meta_size(ctx_out); |
|
for (size_t i = 0; i < meta_size; ++i) { |
|
fout.put(0); |
|
} |
|
|
|
|
|
const std::vector<std::string> k_names = { |
|
".*weight", |
|
}; |
|
|
|
std::vector<uint8_t> work(512); |
|
std::vector<float> conv_buf(512); |
|
size_t total_size_org = 0; |
|
size_t total_size_new = 0; |
|
|
|
for (int i = 0; i < n_tensors; ++i) { |
|
const std::string name = gguf_get_tensor_name(ctx_src, i); |
|
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str()); |
|
|
|
enum ggml_type new_type; |
|
void * new_data; |
|
size_t new_size; |
|
|
|
bool quantize = false; |
|
for (const auto & s : k_names) { |
|
if (std::regex_match(name, std::regex(s))) { |
|
quantize = true; |
|
break; |
|
} |
|
} |
|
|
|
|
|
quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type); |
|
|
|
|
|
if(avoid_problematic_indivisible) |
|
{ |
|
if(name=="v.position_embd.weight") |
|
{ |
|
quantize = false; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
if (quantize) { |
|
new_type = type; |
|
if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) { |
|
new_type = GGML_TYPE_Q8_0; |
|
|
|
} |
|
const size_t n_elms = ggml_nelements(cur); |
|
float * f32_data; |
|
|
|
switch (cur->type) { |
|
case GGML_TYPE_F32: |
|
f32_data = (float *)cur->data; |
|
break; |
|
case GGML_TYPE_F16: |
|
if (conv_buf.size() < n_elms) { |
|
conv_buf.resize(n_elms); |
|
} |
|
for (size_t j = 0; j < n_elms; ++j) { |
|
conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]); |
|
} |
|
f32_data = (float *)conv_buf.data(); |
|
break; |
|
default: |
|
LOG_ERR("Please use an input file in f32 or f16\n"); |
|
gguf_free(ctx_out); |
|
return false; |
|
} |
|
|
|
if (work.size() < n_elms * 4) { |
|
work.resize(n_elms * 4); |
|
} |
|
new_data = work.data(); |
|
|
|
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr); |
|
} else { |
|
new_type = cur->type; |
|
new_data = cur->data; |
|
new_size = ggml_nbytes(cur); |
|
} |
|
const size_t orig_size = ggml_nbytes(cur); |
|
total_size_org += orig_size; |
|
total_size_new += new_size; |
|
gguf_set_tensor_type(ctx_out, name.c_str(), new_type); |
|
GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size); |
|
gguf_set_tensor_data(ctx_out, name.c_str(), new_data); |
|
fout.write((const char *)new_data, new_size); |
|
size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size; |
|
for (size_t j = 0; j < pad; ++j) { |
|
fout.put(0); |
|
} |
|
|
|
LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize, |
|
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); |
|
} |
|
|
|
|
|
fout.seekp(0, std::ios::beg); |
|
std::vector<uint8_t> meta(meta_size); |
|
gguf_get_meta_data(ctx_out, meta.data()); |
|
fout.write((const char *)meta.data(), meta_size); |
|
|
|
fout.close(); |
|
|
|
clip_free(ctx_clip); |
|
gguf_free(ctx_out); |
|
|
|
{ |
|
LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0); |
|
LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
int clip_n_mmproj_embd(const struct clip_ctx * ctx) { |
|
if (ctx->proj_type == PROJECTOR_TYPE_LDP) { |
|
return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0]; |
|
} |
|
if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) { |
|
return ctx->vision_model.mm_model_peg_0_b->ne[0]; |
|
} |
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP) { |
|
return ctx->vision_model.mm_2_b->ne[0]; |
|
} |
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { |
|
return ctx->vision_model.mm_3_b->ne[0]; |
|
} |
|
if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { |
|
if (ctx->minicpmv_version == 2) { |
|
return 4096; |
|
} |
|
else if (ctx->minicpmv_version == 3) { |
|
return 3584; |
|
} |
|
else if (ctx->minicpmv_version == 4) { |
|
return 3584; |
|
} |
|
} |
|
if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){ |
|
return ctx->vision_model.mm_model_mlp_3_w->ne[1]; |
|
} |
|
if (ctx->proj_type == PROJECTOR_TYPE_MERGER) { |
|
return ctx->vision_model.mm_1_b->ne[0]; |
|
} |
|
if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { |
|
return ctx->vision_model.mm_input_proj_w->ne[0]; |
|
} |
|
|
|
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type]; |
|
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); |
|
} |
|
|
|
int clip_is_minicpmv(const struct clip_ctx * ctx) { |
|
if (ctx->has_minicpmv_projector) { |
|
return ctx->minicpmv_version; |
|
} |
|
return 0; |
|
} |
|
|
|
bool clip_is_glm(const struct clip_ctx * ctx) { |
|
return ctx->has_glm_projector; |
|
} |
|
bool clip_is_qwen2vl(const struct clip_ctx * ctx) { |
|
return ctx->has_qwen2vl_merger; |
|
} |
|
|
|
|
|
int get_deepest_feature_layer(const struct clip_ctx * ctx) { |
|
|
|
|
|
const auto & hparams = ctx->vision_model.hparams; |
|
int n_layer = hparams.n_layer - 1; |
|
int deepest_feature_layer = -1; |
|
|
|
|
|
|
|
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) { |
|
n_layer += 1; |
|
} |
|
|
|
|
|
for (const auto & feature_layer : hparams.vision_feature_layer) { |
|
if (feature_layer > deepest_feature_layer) { |
|
deepest_feature_layer = feature_layer; |
|
} |
|
} |
|
return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer; |
|
} |
|
|
|
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) { |
|
clip_image_f32 clip_img; |
|
clip_img.buf.resize(h * w * 3); |
|
for (int i = 0; i < h*w*3; i++) |
|
{ |
|
clip_img.buf[i] = img[i]; |
|
} |
|
clip_img.nx = w; |
|
clip_img.ny = h; |
|
clip_image_encode(ctx, n_threads, &clip_img, vec); |
|
return true; |
|
} |
|
|