kcpp-compiled-cuda-linux / ggml /src /ggml-opencl /kernels /ggml-opencl_mul_mat_Ab_Bi_8x4.cl
Darkknight535's picture
Upload folder using huggingface_hub
1d30d42 verified
// src0_q, src0_d, src1 are transposed as a preprocessing step
// 4-bit weights are transposed in groups of 4 (unsigned short int)
// consider weights originally "next to each other", now "on top of each other"
// each fiber computes a 8x4 tile of output elements
// using unshuffled weights
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#ifdef cl_qcom_reqd_sub_group_size
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#ifdef ADRENO_GPU
REQD_SUBGROUP_SIZE_128
#endif
kernel void kernel_mul_mat_Ab_Bi_8x4(
global const ushort * src0_q, // quantized A
global const half * src0_d, // A scales
__read_only image1d_buffer_t src1, // B (1d image)
global float * dst, // C
int m, // M
int n, // N with padding
int k, // K
int n_no_padding // N without padding
) {
int m_4 = m >> 2;
int n_4 = n >> 2;
int gy = get_global_id(0);
int gx = get_global_id(1);
int gx_2 = gx << 2;
half8 c0 = 0, c1 = 0, c2 = 0, c3 = 0; // 8x4 output elements
half8 B; // registers for activations
half4 dequantized_weights; // registers for dequantized weights
__global const ushort* weight_ptr = src0_q + gx_2; // pointer for weights
__global const half* scale_ptr = src0_d + gx_2; // pointer for scales
for(int i=0; i<k; i+=4){ //loop through K dimension
B.s0123 = read_imageh(src1, gy*2 + (i)*(n_4));
B.s4567 = read_imageh(src1, gy*2 + (i)*(n_4)+1);
// keep (i/4) and (i/32) in parenthesis, rounds down
// load 4 consecutive groups of 4 weights
ushort4 bits4 = vload4(0, weight_ptr + (i/4)*(m)); // (i/4) because weights grouped in 4s
// load 4 consecutive scales
half4 scale = vload4(0, scale_ptr + (i/32)*(m));// (i/32) because 1 scale per 32 elements
// j=0
dequantized_weights.s0 = ((bits4.s0 & (0x000F)) - 8) * scale.s0; // dequantize a row of the 16 weights
dequantized_weights.s1 = ((bits4.s1 & (0x000F)) - 8) * scale.s1;
dequantized_weights.s2 = ((bits4.s2 & (0x000F)) - 8) * scale.s2;
dequantized_weights.s3 = ((bits4.s3 & (0x000F)) - 8) * scale.s3;
c0 += B * dequantized_weights.s0; // vector-scalar multiplication to accumulate
c1 += B * dequantized_weights.s1;
c2 += B * dequantized_weights.s2;
c3 += B * dequantized_weights.s3;
// j=1
B.s0123 = read_imageh(src1, gy*2 + (i+1)*(n_4));
B.s4567 = read_imageh(src1, gy*2 + (i+1)*(n_4)+1);
dequantized_weights.s0 = (((bits4.s0 & (0x00F0)) >> 4) - 8) * scale.s0; // dequantize a row of the 16 weights
dequantized_weights.s1 = (((bits4.s1 & (0x00F0)) >> 4) - 8) * scale.s1;
dequantized_weights.s2 = (((bits4.s2 & (0x00F0)) >> 4) - 8) * scale.s2;
dequantized_weights.s3 = (((bits4.s3 & (0x00F0)) >> 4) - 8) * scale.s3;
c0 += B * dequantized_weights.s0; //vector-scalar multiplication to accumulate
c1 += B * dequantized_weights.s1;
c2 += B * dequantized_weights.s2;
c3 += B * dequantized_weights.s3;
// j=2
B.s0123 = read_imageh(src1, gy*2 + (i+2)*(n_4));
B.s4567 = read_imageh(src1, gy*2 + (i+2)*(n_4)+1);
dequantized_weights.s0 = (((bits4.s0 & (0x0F00)) >> 8) - 8) * scale.s0; // dequantize a row of the 16 weights
dequantized_weights.s1 = (((bits4.s1 & (0x0F00)) >> 8) - 8) * scale.s1;
dequantized_weights.s2 = (((bits4.s2 & (0x0F00)) >> 8) - 8) * scale.s2;
dequantized_weights.s3 = (((bits4.s3 & (0x0F00)) >> 8) - 8) * scale.s3;
c0 += B * dequantized_weights.s0; // vector-scalar multiplication to accumulate
c1 += B * dequantized_weights.s1;
c2 += B * dequantized_weights.s2;
c3 += B * dequantized_weights.s3;
// j=3
B.s0123 = read_imageh(src1, gy*2 + (i+3)*(n_4));
B.s4567 = read_imageh(src1, gy*2 + (i+3)*(n_4)+1);
dequantized_weights.s0 = (((bits4.s0 & (0xF000)) >> 12) - 8) * scale.s0; // dequantize a row of the 16 weights
dequantized_weights.s1 = (((bits4.s1 & (0xF000)) >> 12) - 8) * scale.s1;
dequantized_weights.s2 = (((bits4.s2 & (0xF000)) >> 12) - 8) * scale.s2;
dequantized_weights.s3 = (((bits4.s3 & (0xF000)) >> 12) - 8) * scale.s3;
c0 += B * dequantized_weights.s0; // vector-scalar multiplication to accumulate
c1 += B * dequantized_weights.s1;
c2 += B * dequantized_weights.s2;
c3 += B * dequantized_weights.s3;
}
int idx = (gy<<3)*m + (gx<<2); // vectorized store 16 elements
// conditional check if store is to a valid location. Required when N is not a multiple of 8
// if statements allow registers to be reused for each store
// provides a performance boost due to reduced register footprint, which increases number of concurrent waves
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s0, c1.s0, c2.s0, c3.s0), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s1, c1.s1, c2.s1, c3.s1), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s2, c1.s2, c2.s2, c3.s2), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s3, c1.s3, c2.s3, c3.s3), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s4, c1.s4, c2.s4, c3.s4), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s5, c1.s5, c2.s5, c3.s5), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s6, c1.s6, c2.s6, c3.s6), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s7, c1.s7, c2.s7, c3.s7), 0, dst + idx);
}
}