kcpp-compiled-cuda-linux / include /vulkan /slang /slang-cpp-scalar-intrinsics.h
Darkknight535's picture
Upload folder using huggingface_hub
1d30d42 verified
#ifndef SLANG_PRELUDE_SCALAR_INTRINSICS_H
#define SLANG_PRELUDE_SCALAR_INTRINSICS_H
#if !defined(SLANG_LLVM) && SLANG_PROCESSOR_X86_64 && SLANG_VC
// If we have visual studio and 64 bit processor, we can assume we have popcnt, and can include x86 intrinsics
# include <intrin.h>
#endif
#ifndef SLANG_FORCE_INLINE
# define SLANG_FORCE_INLINE inline
#endif
#ifdef SLANG_PRELUDE_NAMESPACE
namespace SLANG_PRELUDE_NAMESPACE {
#endif
#ifndef SLANG_PRELUDE_PI
# define SLANG_PRELUDE_PI 3.14159265358979323846
#endif
union Union32
{
uint32_t u;
int32_t i;
float f;
};
union Union64
{
uint64_t u;
int64_t i;
double d;
};
// 32 bit cast conversions
SLANG_FORCE_INLINE int32_t _bitCastFloatToInt(float f) { Union32 u; u.f = f; return u.i; }
SLANG_FORCE_INLINE float _bitCastIntToFloat(int32_t i) { Union32 u; u.i = i; return u.f; }
SLANG_FORCE_INLINE uint32_t _bitCastFloatToUInt(float f) { Union32 u; u.f = f; return u.u; }
SLANG_FORCE_INLINE float _bitCastUIntToFloat(uint32_t ui) { Union32 u; u.u = ui; return u.f; }
// ----------------------------- F16 -----------------------------------------
// This impl is based on FloatToHalf that is in Slang codebase
SLANG_FORCE_INLINE uint32_t f32tof16(const float value)
{
const uint32_t inBits = _bitCastFloatToUInt(value);
// bits initially set to just the sign bit
uint32_t bits = (inBits >> 16) & 0x8000;
// Mantissa can't be used as is, as it holds last bit, for rounding.
uint32_t m = (inBits >> 12) & 0x07ff;
uint32_t e = (inBits >> 23) & 0xff;
if (e < 103)
{
// It's zero
return bits;
}
if (e == 0xff)
{
// Could be a NAN or INF. Is INF if *input* mantissa is 0.
// Remove last bit for rounding to make output mantissa.
m >>= 1;
// We *assume* float16/float32 signaling bit and remaining bits
// semantics are the same. (The signalling bit convention is target specific!).
// Non signal bit's usage within mantissa for a NAN are also target specific.
// If the m is 0, it could be because the result is INF, but it could also be because all the
// bits that made NAN were dropped as we have less mantissa bits in f16.
// To fix for this we make non zero if m is 0 and the input mantissa was not.
// This will (typically) produce a signalling NAN.
m += uint32_t(m == 0 && (inBits & 0x007fffffu));
// Combine for output
return (bits | 0x7c00u | m);
}
if (e > 142)
{
// INF.
return bits | 0x7c00u;
}
if (e < 113)
{
m |= 0x0800u;
bits |= (m >> (114 - e)) + ((m >> (113 - e)) & 1);
return bits;
}
bits |= ((e - 112) << 10) | (m >> 1);
bits += m & 1;
return bits;
}
static const float g_f16tof32Magic = _bitCastIntToFloat((127 + (127 - 15)) << 23);
SLANG_FORCE_INLINE float f16tof32(const uint32_t value)
{
const uint32_t sign = (value & 0x8000) << 16;
uint32_t exponent = (value & 0x7c00) >> 10;
uint32_t mantissa = (value & 0x03ff);
if (exponent == 0)
{
// If mantissa is 0 we are done, as output is 0.
// If it's not zero we must have a denormal.
if (mantissa)
{
// We have a denormal so use the magic to do exponent adjust
return _bitCastIntToFloat(sign | ((value & 0x7fff) << 13)) * g_f16tof32Magic;
}
}
else
{
// If the exponent is NAN or INF exponent is 0x1f on input.
// If that's the case, we just need to set the exponent to 0xff on output
// and the mantissa can just stay the same. If its 0 it's INF, else it is NAN and we just copy the bits
//
// Else we need to correct the exponent in the normalized case.
exponent = (exponent == 0x1F) ? 0xff : (exponent + (-15 + 127));
}
return _bitCastUIntToFloat(sign | (exponent << 23) | (mantissa << 13));
}
// ----------------------------- F32 -----------------------------------------
// Helpers
SLANG_FORCE_INLINE float F32_calcSafeRadians(float radians);
#ifdef SLANG_LLVM
SLANG_PRELUDE_EXTERN_C_START
// Unary
float F32_ceil(float f);
float F32_floor(float f);
float F32_round(float f);
float F32_sin(float f);
float F32_cos(float f);
float F32_tan(float f);
float F32_asin(float f);
float F32_acos(float f);
float F32_atan(float f);
float F32_sinh(float f);
float F32_cosh(float f);
float F32_tanh(float f);
float F32_log2(float f);
float F32_log(float f);
float F32_log10(float f);
float F32_exp2(float f);
float F32_exp(float f);
float F32_abs(float f);
float F32_trunc(float f);
float F32_sqrt(float f);
bool F32_isnan(float f);
bool F32_isfinite(float f);
bool F32_isinf(float f);
// Binary
SLANG_FORCE_INLINE float F32_min(float a, float b) { return a < b ? a : b; }
SLANG_FORCE_INLINE float F32_max(float a, float b) { return a > b ? a : b; }
float F32_pow(float a, float b);
float F32_fmod(float a, float b);
float F32_remainder(float a, float b);
float F32_atan2(float a, float b);
float F32_frexp(float x, int* e);
float F32_modf(float x, float* ip);
// Ternary
SLANG_FORCE_INLINE float F32_fma(float a, float b, float c) { return a * b + c; }
SLANG_PRELUDE_EXTERN_C_END
#else
// Unary
SLANG_FORCE_INLINE float F32_ceil(float f) { return ::ceilf(f); }
SLANG_FORCE_INLINE float F32_floor(float f) { return ::floorf(f); }
SLANG_FORCE_INLINE float F32_round(float f) { return ::roundf(f); }
SLANG_FORCE_INLINE float F32_sin(float f) { return ::sinf(f); }
SLANG_FORCE_INLINE float F32_cos(float f) { return ::cosf(f); }
SLANG_FORCE_INLINE float F32_tan(float f) { return ::tanf(f); }
SLANG_FORCE_INLINE float F32_asin(float f) { return ::asinf(f); }
SLANG_FORCE_INLINE float F32_acos(float f) { return ::acosf(f); }
SLANG_FORCE_INLINE float F32_atan(float f) { return ::atanf(f); }
SLANG_FORCE_INLINE float F32_sinh(float f) { return ::sinhf(f); }
SLANG_FORCE_INLINE float F32_cosh(float f) { return ::coshf(f); }
SLANG_FORCE_INLINE float F32_tanh(float f) { return ::tanhf(f); }
SLANG_FORCE_INLINE float F32_log2(float f) { return ::log2f(f); }
SLANG_FORCE_INLINE float F32_log(float f) { return ::logf(f); }
SLANG_FORCE_INLINE float F32_log10(float f) { return ::log10f(f); }
SLANG_FORCE_INLINE float F32_exp2(float f) { return ::exp2f(f); }
SLANG_FORCE_INLINE float F32_exp(float f) { return ::expf(f); }
SLANG_FORCE_INLINE float F32_abs(float f) { return ::fabsf(f); }
SLANG_FORCE_INLINE float F32_trunc(float f) { return ::truncf(f); }
SLANG_FORCE_INLINE float F32_sqrt(float f) { return ::sqrtf(f); }
SLANG_FORCE_INLINE bool F32_isnan(float f) { return SLANG_PRELUDE_STD isnan(f); }
SLANG_FORCE_INLINE bool F32_isfinite(float f) { return SLANG_PRELUDE_STD isfinite(f); }
SLANG_FORCE_INLINE bool F32_isinf(float f) { return SLANG_PRELUDE_STD isinf(f); }
// Binary
SLANG_FORCE_INLINE float F32_min(float a, float b) { return ::fminf(a, b); }
SLANG_FORCE_INLINE float F32_max(float a, float b) { return ::fmaxf(a, b); }
SLANG_FORCE_INLINE float F32_pow(float a, float b) { return ::powf(a, b); }
SLANG_FORCE_INLINE float F32_fmod(float a, float b) { return ::fmodf(a, b); }
SLANG_FORCE_INLINE float F32_remainder(float a, float b) { return ::remainderf(a, b); }
SLANG_FORCE_INLINE float F32_atan2(float a, float b) { return float(::atan2(a, b)); }
SLANG_FORCE_INLINE float F32_frexp(float x, int* e) { return ::frexpf(x, e); }
SLANG_FORCE_INLINE float F32_modf(float x, float* ip)
{
return ::modff(x, ip);
}
// Ternary
SLANG_FORCE_INLINE float F32_fma(float a, float b, float c) { return ::fmaf(a, b, c); }
#endif
SLANG_FORCE_INLINE float F32_calcSafeRadians(float radians)
{
// Put 0 to 2pi cycles to cycle around 0 to 1
float a = radians * (1.0f / float(SLANG_PRELUDE_PI * 2));
// Get truncated fraction, as value in 0 - 1 range
a = a - F32_floor(a);
// Convert back to 0 - 2pi range
return (a * float(SLANG_PRELUDE_PI * 2));
}
SLANG_FORCE_INLINE float F32_rsqrt(float f) { return 1.0f / F32_sqrt(f); }
SLANG_FORCE_INLINE float F32_sign(float f) { return ( f == 0.0f) ? f : (( f < 0.0f) ? -1.0f : 1.0f); }
SLANG_FORCE_INLINE float F32_frac(float f) { return f - F32_floor(f); }
SLANG_FORCE_INLINE uint32_t F32_asuint(float f) { Union32 u; u.f = f; return u.u; }
SLANG_FORCE_INLINE int32_t F32_asint(float f) { Union32 u; u.f = f; return u.i; }
// ----------------------------- F64 -----------------------------------------
SLANG_FORCE_INLINE double F64_calcSafeRadians(double radians);
#ifdef SLANG_LLVM
SLANG_PRELUDE_EXTERN_C_START
// Unary
double F64_ceil(double f);
double F64_floor(double f);
double F64_round(double f);
double F64_sin(double f);
double F64_cos(double f);
double F64_tan(double f);
double F64_asin(double f);
double F64_acos(double f);
double F64_atan(double f);
double F64_sinh(double f);
double F64_cosh(double f);
double F64_tanh(double f);
double F64_log2(double f);
double F64_log(double f);
double F64_log10(double f);
double F64_exp2(double f);
double F64_exp(double f);
double F64_abs(double f);
double F64_trunc(double f);
double F64_sqrt(double f);
bool F64_isnan(double f);
bool F64_isfinite(double f);
bool F64_isinf(double f);
// Binary
SLANG_FORCE_INLINE double F64_min(double a, double b) { return a < b ? a : b; }
SLANG_FORCE_INLINE double F64_max(double a, double b) { return a > b ? a : b; }
double F64_pow(double a, double b);
double F64_fmod(double a, double b);
double F64_remainder(double a, double b);
double F64_atan2(double a, double b);
double F64_frexp(double x, int* e);
double F64_modf(double x, double* ip);
// Ternary
SLANG_FORCE_INLINE double F64_fma(double a, double b, double c) { return a * b + c; }
SLANG_PRELUDE_EXTERN_C_END
#else // SLANG_LLVM
// Unary
SLANG_FORCE_INLINE double F64_ceil(double f) { return ::ceil(f); }
SLANG_FORCE_INLINE double F64_floor(double f) { return ::floor(f); }
SLANG_FORCE_INLINE double F64_round(double f) { return ::round(f); }
SLANG_FORCE_INLINE double F64_sin(double f) { return ::sin(f); }
SLANG_FORCE_INLINE double F64_cos(double f) { return ::cos(f); }
SLANG_FORCE_INLINE double F64_tan(double f) { return ::tan(f); }
SLANG_FORCE_INLINE double F64_asin(double f) { return ::asin(f); }
SLANG_FORCE_INLINE double F64_acos(double f) { return ::acos(f); }
SLANG_FORCE_INLINE double F64_atan(double f) { return ::atan(f); }
SLANG_FORCE_INLINE double F64_sinh(double f) { return ::sinh(f); }
SLANG_FORCE_INLINE double F64_cosh(double f) { return ::cosh(f); }
SLANG_FORCE_INLINE double F64_tanh(double f) { return ::tanh(f); }
SLANG_FORCE_INLINE double F64_log2(double f) { return ::log2(f); }
SLANG_FORCE_INLINE double F64_log(double f) { return ::log(f); }
SLANG_FORCE_INLINE double F64_log10(float f) { return ::log10(f); }
SLANG_FORCE_INLINE double F64_exp2(double f) { return ::exp2(f); }
SLANG_FORCE_INLINE double F64_exp(double f) { return ::exp(f); }
SLANG_FORCE_INLINE double F64_abs(double f) { return ::fabs(f); }
SLANG_FORCE_INLINE double F64_trunc(double f) { return ::trunc(f); }
SLANG_FORCE_INLINE double F64_sqrt(double f) { return ::sqrt(f); }
SLANG_FORCE_INLINE bool F64_isnan(double f) { return SLANG_PRELUDE_STD isnan(f); }
SLANG_FORCE_INLINE bool F64_isfinite(double f) { return SLANG_PRELUDE_STD isfinite(f); }
SLANG_FORCE_INLINE bool F64_isinf(double f) { return SLANG_PRELUDE_STD isinf(f); }
// Binary
SLANG_FORCE_INLINE double F64_min(double a, double b) { return ::fmin(a, b); }
SLANG_FORCE_INLINE double F64_max(double a, double b) { return ::fmax(a, b); }
SLANG_FORCE_INLINE double F64_pow(double a, double b) { return ::pow(a, b); }
SLANG_FORCE_INLINE double F64_fmod(double a, double b) { return ::fmod(a, b); }
SLANG_FORCE_INLINE double F64_remainder(double a, double b) { return ::remainder(a, b); }
SLANG_FORCE_INLINE double F64_atan2(double a, double b) { return ::atan2(a, b); }
SLANG_FORCE_INLINE double F64_frexp(double x, int* e) { return ::frexp(x, e); }
SLANG_FORCE_INLINE double F64_modf(double x, double* ip)
{
return ::modf(x, ip);
}
// Ternary
SLANG_FORCE_INLINE double F64_fma(double a, double b, double c) { return ::fma(a, b, c); }
#endif // SLANG_LLVM
SLANG_FORCE_INLINE double F64_rsqrt(double f) { return 1.0 / F64_sqrt(f); }
SLANG_FORCE_INLINE double F64_sign(double f) { return (f == 0.0) ? f : ((f < 0.0) ? -1.0 : 1.0); }
SLANG_FORCE_INLINE double F64_frac(double f) { return f - F64_floor(f); }
SLANG_FORCE_INLINE void F64_asuint(double d, uint32_t* low, uint32_t* hi)
{
Union64 u;
u.d = d;
*low = uint32_t(u.u);
*hi = uint32_t(u.u >> 32);
}
SLANG_FORCE_INLINE void F64_asint(double d, int32_t* low, int32_t* hi)
{
Union64 u;
u.d = d;
*low = int32_t(u.u);
*hi = int32_t(u.u >> 32);
}
SLANG_FORCE_INLINE double F64_calcSafeRadians(double radians)
{
// Put 0 to 2pi cycles to cycle around 0 to 1
double a = radians * (1.0f / (SLANG_PRELUDE_PI * 2));
// Get truncated fraction, as value in 0 - 1 range
a = a - F64_floor(a);
// Convert back to 0 - 2pi range
return (a * (SLANG_PRELUDE_PI * 2));
}
// ----------------------------- I32 -----------------------------------------
SLANG_FORCE_INLINE int32_t I32_abs(int32_t f) { return (f < 0) ? -f : f; }
SLANG_FORCE_INLINE int32_t I32_min(int32_t a, int32_t b) { return a < b ? a : b; }
SLANG_FORCE_INLINE int32_t I32_max(int32_t a, int32_t b) { return a > b ? a : b; }
SLANG_FORCE_INLINE float I32_asfloat(int32_t x) { Union32 u; u.i = x; return u.f; }
SLANG_FORCE_INLINE uint32_t I32_asuint(int32_t x) { return uint32_t(x); }
SLANG_FORCE_INLINE double I32_asdouble(int32_t low, int32_t hi )
{
Union64 u;
u.u = (uint64_t(hi) << 32) | uint32_t(low);
return u.d;
}
// ----------------------------- U32 -----------------------------------------
SLANG_FORCE_INLINE uint32_t U32_abs(uint32_t f) { return f; }
SLANG_FORCE_INLINE uint32_t U32_min(uint32_t a, uint32_t b) { return a < b ? a : b; }
SLANG_FORCE_INLINE uint32_t U32_max(uint32_t a, uint32_t b) { return a > b ? a : b; }
SLANG_FORCE_INLINE float U32_asfloat(uint32_t x) { Union32 u; u.u = x; return u.f; }
SLANG_FORCE_INLINE uint32_t U32_asint(int32_t x) { return uint32_t(x); }
SLANG_FORCE_INLINE double U32_asdouble(uint32_t low, uint32_t hi)
{
Union64 u;
u.u = (uint64_t(hi) << 32) | low;
return u.d;
}
SLANG_FORCE_INLINE uint32_t U32_countbits(uint32_t v)
{
#if SLANG_GCC_FAMILY && !defined(SLANG_LLVM)
return __builtin_popcount(v);
#elif SLANG_PROCESSOR_X86_64 && SLANG_VC
return __popcnt(v);
#else
uint32_t c = 0;
while (v)
{
c++;
v &= v - 1;
}
return c;
#endif
}
// ----------------------------- U64 -----------------------------------------
SLANG_FORCE_INLINE uint64_t U64_abs(uint64_t f) { return f; }
SLANG_FORCE_INLINE uint64_t U64_min(uint64_t a, uint64_t b) { return a < b ? a : b; }
SLANG_FORCE_INLINE uint64_t U64_max(uint64_t a, uint64_t b) { return a > b ? a : b; }
// TODO(JS): We don't define countbits for 64bit in stdlib currently.
// It's not clear from documentation if it should return 32 or 64 bits, if it exists.
// 32 bits can always hold the result, and will be implicitly promoted.
SLANG_FORCE_INLINE uint32_t U64_countbits(uint64_t v)
{
#if SLANG_GCC_FAMILY && !defined(SLANG_LLVM)
return uint32_t(__builtin_popcountl(v));
#elif SLANG_PROCESSOR_X86_64 && SLANG_VC
return uint32_t(__popcnt64(v));
#else
uint32_t c = 0;
while (v)
{
c++;
v &= v - 1;
}
return c;
#endif
}
// ----------------------------- I64 -----------------------------------------
SLANG_FORCE_INLINE int64_t I64_abs(int64_t f) { return (f < 0) ? -f : f; }
SLANG_FORCE_INLINE int64_t I64_min(int64_t a, int64_t b) { return a < b ? a : b; }
SLANG_FORCE_INLINE int64_t I64_max(int64_t a, int64_t b) { return a > b ? a : b; }
// ----------------------------- Interlocked ---------------------------------
#if SLANG_LLVM
#else // SLANG_LLVM
# ifdef _WIN32
# include <intrin.h>
# endif
SLANG_FORCE_INLINE void InterlockedAdd(uint32_t* dest, uint32_t value, uint32_t* oldValue)
{
# ifdef _WIN32
*oldValue = _InterlockedExchangeAdd((long*)dest, (long)value);
# else
*oldValue = __sync_fetch_and_add(dest, value);
# endif
}
#endif // SLANG_LLVM
// ----------------------- fmod --------------------------
SLANG_FORCE_INLINE float _slang_fmod(float x, float y)
{
return F32_fmod(x, y);
}
SLANG_FORCE_INLINE double _slang_fmod(double x, double y)
{
return F64_fmod(x, y);
}
#ifdef SLANG_PRELUDE_NAMESPACE
}
#endif
#endif