multilingual-e5-base_censor_v0.1

This model is a fine-tuned version of intfloat/multilingual-e5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5077
  • Accuracy: 0.7695
  • Precision: 0.7729
  • Recall: 0.7695
  • F1: 0.7708
  • Roc Auc: 0.8424
  • Per Class F1: [0.8104358705451601, 0.7061407261629732]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc Per Class F1
0.5485 1.0 2795 0.5249 0.7349 0.7498 0.7349 0.7383 0.8169 [0.7723692804179954, 0.6827648980028912]
0.4871 2.0 5590 0.5059 0.7610 0.7667 0.7610 0.7629 0.8362 [0.8013980033834657, 0.7000926419808541]
0.4392 3.0 8385 0.5077 0.7695 0.7729 0.7695 0.7708 0.8424 [0.8104358705451601, 0.7061407261629732]

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for Data-Lab/multilingual-e5-base_censor_v0.1

Finetuned
(48)
this model