File size: 2,179 Bytes
d7ee449 ae24a87 d7ee449 ae24a87 d7ee449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: intfloat/multilingual-e5-base
license: mit
metrics:
- accuracy
- precision
- recall
- f1
tags:
- generated_from_trainer
model-index:
- name: multilingual-e5-base_censor_v0.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multilingual-e5-base_censor_v0.1
This model is a fine-tuned version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5077
- Accuracy: 0.7695
- Precision: 0.7729
- Recall: 0.7695
- F1: 0.7708
- Roc Auc: 0.8424
- Per Class F1: [0.8104358705451601, 0.7061407261629732]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | Per Class F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|:----------------------------------------:|
| 0.5485 | 1.0 | 2795 | 0.5249 | 0.7349 | 0.7498 | 0.7349 | 0.7383 | 0.8169 | [0.7723692804179954, 0.6827648980028912] |
| 0.4871 | 2.0 | 5590 | 0.5059 | 0.7610 | 0.7667 | 0.7610 | 0.7629 | 0.8362 | [0.8013980033834657, 0.7000926419808541] |
| 0.4392 | 3.0 | 8385 | 0.5077 | 0.7695 | 0.7729 | 0.7695 | 0.7708 | 0.8424 | [0.8104358705451601, 0.7061407261629732] |
### Framework versions
- Transformers 4.43.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|