SentenceTransformer based on thenlper/gte-large
This is a sentence-transformers model finetuned from thenlper/gte-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Dataologist/gte_large_op")
# Run inference
sentences = [
'\'American Bandstand\' is a 8.71/10 rated T.V. Show, starring Dick Clark. It is about American Bandstand was an American music-performance show that aired in various versions from 1952 to 1989 and was hosted from 1956 until its final season by Dick Clark, who also served as producer. The show featured teenagers dancing to Top 40 music introduced by Clark; at least one popular musical act—over the decades, running the gamut from Jerry Lee Lewis to Run DMC—would usually appear in person to lip-sync one of their latest singles. Freddy "Boom Boom" Cannon holds the record for most appearances at 110.\n\nThe show\'s popularity helped Dick Clark become an American media mogul and inspired similar long-running music programs, such as Soul Train and Top of the Pops. Clark eventually assumed ownership of the program through his Dick Clark Productions company..',
'\'American Bandstand\' is a 8.71/10 rated T.V. Show, starring Dick Clark. It is about American Bandstand was an American music-performance show that aired in various versions from 1952 to 1989 and was hosted from 1956 until its final season by Dick Clark, who also served as producer. The show featured teenagers dancing to Top 40 music introduced by Clark; at least one popular musical act—over the decades, running the gamut from Jerry Lee Lewis to Run DMC—would usually appear in person to lip-sync one of their latest singles. Freddy "Boom Boom" Cannon holds the record for most appearances at 110.\n\nThe show\'s popularity helped Dick Clark become an American media mogul and inspired similar long-running music programs, such as Soul Train and Top of the Pops. Clark eventually assumed ownership of the program through his Dick Clark Productions company..',
"'White Lies' is a No Rating/10 rated T.V. Show, starring Natalie Dormer, Brendon Daniels, Daniel Schultz, Morgan Santo, Langley Kirkwood. It is about Edie Hansen, who is set in the affluent Cape Town neighborhood of Bishopscourt, is drawn into the gritty underbelly of the city, which hides beneath its gorgeous beauty and takes her back to a stormy past..",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 602,010 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 23 tokens
- mean: 95.98 tokens
- max: 368 tokens
- min: 23 tokens
- mean: 95.98 tokens
- max: 368 tokens
- Samples:
sentence_0 sentence_1 'Down Stream Highway' is a No Rating/10 rated Movie, starring . It is about Narrated by Bill Slater, this short black & white educational film is about sporting and outdoor activities on the majestic Hudson River in New York State..
'Down Stream Highway' is a No Rating/10 rated Movie, starring . It is about Narrated by Bill Slater, this short black & white educational film is about sporting and outdoor activities on the majestic Hudson River in New York State..
'La joueuse d'orgue' is a No Rating/10 rated Movie, starring Marcelle Géniat, Pierre Larquey, Jacques Varennes, Gaby Triquet, France Ellys. It is about Robert Bernier murdered his brother with the complicity of a worker. The only witness to the tragedy, Veronique was injured while rescuing her boss and remains blind. Later, cured by an operation, she denounces the criminal whose voice she recognized and who had taken over the factory..
'La joueuse d'orgue' is a No Rating/10 rated Movie, starring Marcelle Géniat, Pierre Larquey, Jacques Varennes, Gaby Triquet, France Ellys. It is about Robert Bernier murdered his brother with the complicity of a worker. The only witness to the tragedy, Veronique was injured while rescuing her boss and remains blind. Later, cured by an operation, she denounces the criminal whose voice she recognized and who had taken over the factory..
'Disoriented' is a 8.0/10 rated Movie, starring . It is about Twenty-something West Cordova is trapped in a waking nightmare. His overbearing mother is bent on molding him into a MD. His crazy, "wannabe-a-supermodel," Japanese girlfriend craves blonde hair and round eyes. And his long lost, jock brother just returned home having traded his high tops for high heels. If young "Doctor" Cordova can pass pre-med, mend his fractured family and revive his romance, he may just discover the cure for his own unraveling identity..
'Disoriented' is a 8.0/10 rated Movie, starring . It is about Twenty-something West Cordova is trapped in a waking nightmare. His overbearing mother is bent on molding him into a MD. His crazy, "wannabe-a-supermodel," Japanese girlfriend craves blonde hair and round eyes. And his long lost, jock brother just returned home having traded his high tops for high heels. If young "Doctor" Cordova can pass pre-med, mend his fractured family and revive his romance, he may just discover the cure for his own unraveling identity..
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 4per_device_eval_batch_size
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0033 | 500 | 0.0483 |
0.0066 | 1000 | 0.0 |
0.0100 | 1500 | 0.0 |
0.0133 | 2000 | 0.0 |
0.0166 | 2500 | 0.0 |
0.0199 | 3000 | 0.0 |
0.0233 | 3500 | 0.0 |
0.0266 | 4000 | 0.0 |
0.0299 | 4500 | 0.0 |
0.0332 | 5000 | 0.0 |
0.0365 | 5500 | 0.0 |
0.0399 | 6000 | 0.0 |
0.0432 | 6500 | 0.0 |
0.0465 | 7000 | 0.0 |
0.0498 | 7500 | 0.0 |
0.0532 | 8000 | 0.0 |
0.0565 | 8500 | 0.0 |
0.0598 | 9000 | 0.0 |
0.0631 | 9500 | 0.0 |
0.0664 | 10000 | 0.0 |
0.0698 | 10500 | 0.0 |
0.0731 | 11000 | 0.0 |
0.0764 | 11500 | 0.0 |
0.0797 | 12000 | 0.0 |
0.0831 | 12500 | 0.0 |
0.0864 | 13000 | 0.0 |
0.0897 | 13500 | 0.0 |
0.0930 | 14000 | 0.0 |
0.0963 | 14500 | 0.0 |
0.0997 | 15000 | 0.0 |
0.1030 | 15500 | 0.0 |
0.1063 | 16000 | 0.0 |
0.1096 | 16500 | 0.0 |
0.1130 | 17000 | 0.0 |
0.1163 | 17500 | 0.0 |
0.1196 | 18000 | 0.0 |
0.1229 | 18500 | 0.0 |
0.1262 | 19000 | 0.0 |
0.1296 | 19500 | 0.0 |
0.1329 | 20000 | 0.0 |
0.1362 | 20500 | 0.0 |
0.1395 | 21000 | 0.0 |
0.1429 | 21500 | 0.0 |
0.1462 | 22000 | 0.0 |
0.1495 | 22500 | 0.0 |
0.1528 | 23000 | 0.0 |
0.1561 | 23500 | 0.0 |
0.1595 | 24000 | 0.0 |
0.1628 | 24500 | 0.0 |
0.1661 | 25000 | 0.0 |
0.1694 | 25500 | 0.0 |
0.1728 | 26000 | 0.0 |
0.1761 | 26500 | 0.0 |
0.1794 | 27000 | 0.0 |
0.1827 | 27500 | 0.0 |
0.1860 | 28000 | 0.0 |
0.1894 | 28500 | 0.0 |
0.1927 | 29000 | 0.0 |
0.1960 | 29500 | 0.0 |
0.1993 | 30000 | 0.0 |
0.2027 | 30500 | 0.0 |
0.2060 | 31000 | 0.0 |
0.2093 | 31500 | 0.0 |
0.2126 | 32000 | 0.0 |
0.2159 | 32500 | 0.0 |
0.2193 | 33000 | 0.0 |
0.2226 | 33500 | 0.0 |
0.2259 | 34000 | 0.0 |
0.2292 | 34500 | 0.0 |
0.2326 | 35000 | 0.0 |
0.2359 | 35500 | 0.0 |
0.2392 | 36000 | 0.0 |
0.2425 | 36500 | 0.0 |
0.2458 | 37000 | 0.0 |
0.2492 | 37500 | 0.0 |
0.2525 | 38000 | 0.0 |
0.2558 | 38500 | 0.0 |
0.2591 | 39000 | 0.0 |
0.2625 | 39500 | 0.0 |
0.2658 | 40000 | 0.0 |
0.2691 | 40500 | 0.0 |
0.2724 | 41000 | 0.0 |
0.2757 | 41500 | 0.0 |
0.2791 | 42000 | 0.0 |
0.2824 | 42500 | 0.0 |
0.2857 | 43000 | 0.0 |
0.2890 | 43500 | 0.0 |
0.2924 | 44000 | 0.0 |
0.2957 | 44500 | 0.0 |
0.2990 | 45000 | 0.0 |
0.3023 | 45500 | 0.0 |
0.3056 | 46000 | 0.0 |
0.3090 | 46500 | 0.0 |
0.3123 | 47000 | 0.0 |
0.3156 | 47500 | 0.0 |
0.3189 | 48000 | 0.0 |
0.3223 | 48500 | 0.0 |
0.3256 | 49000 | 0.0 |
0.3289 | 49500 | 0.0 |
0.3322 | 50000 | 0.0 |
0.3355 | 50500 | 0.0 |
0.3389 | 51000 | 0.0 |
0.3422 | 51500 | 0.0 |
0.3455 | 52000 | 0.0 |
0.3488 | 52500 | 0.0 |
0.3522 | 53000 | 0.0 |
0.3555 | 53500 | 0.0 |
0.3588 | 54000 | 0.0 |
0.3621 | 54500 | 0.0 |
0.3654 | 55000 | 0.0 |
0.3688 | 55500 | 0.0 |
0.3721 | 56000 | 0.0 |
0.3754 | 56500 | 0.0 |
0.3787 | 57000 | 0.0 |
0.3821 | 57500 | 0.0 |
0.3854 | 58000 | 0.0 |
0.3887 | 58500 | 0.0 |
0.3920 | 59000 | 0.0 |
0.3953 | 59500 | 0.0 |
0.3987 | 60000 | 0.0 |
0.4020 | 60500 | 0.0 |
0.4053 | 61000 | 0.0 |
0.4086 | 61500 | 0.0 |
0.4120 | 62000 | 0.0 |
0.4153 | 62500 | 0.0 |
0.4186 | 63000 | 0.0 |
0.4219 | 63500 | 0.0 |
0.4252 | 64000 | 0.0 |
0.4286 | 64500 | 0.0 |
0.4319 | 65000 | 0.0 |
0.4352 | 65500 | 0.0 |
0.4385 | 66000 | 0.0 |
0.4419 | 66500 | 0.0 |
0.4452 | 67000 | 0.0 |
0.4485 | 67500 | 0.0 |
0.4518 | 68000 | 0.0 |
0.4551 | 68500 | 0.0 |
0.4585 | 69000 | 0.0 |
0.4618 | 69500 | 0.0 |
0.4651 | 70000 | 0.0 |
0.4684 | 70500 | 0.0 |
0.4718 | 71000 | 0.0 |
0.4751 | 71500 | 0.0 |
0.4784 | 72000 | 0.0 |
0.4817 | 72500 | 0.0 |
0.4850 | 73000 | 0.0 |
0.4884 | 73500 | 0.0 |
0.4917 | 74000 | 0.0 |
0.4950 | 74500 | 0.0 |
0.4983 | 75000 | 0.0 |
0.5017 | 75500 | 0.0 |
0.5050 | 76000 | 0.0 |
0.5083 | 76500 | 0.0 |
0.5116 | 77000 | 0.0 |
0.5149 | 77500 | 0.0 |
0.5183 | 78000 | 0.0 |
0.5216 | 78500 | 0.0 |
0.5249 | 79000 | 0.0 |
0.5282 | 79500 | 0.0 |
0.5316 | 80000 | 0.0 |
0.5349 | 80500 | 0.0 |
0.5382 | 81000 | 0.0 |
0.5415 | 81500 | 0.0 |
0.5448 | 82000 | 0.0 |
0.5482 | 82500 | 0.0 |
0.5515 | 83000 | 0.0 |
0.5548 | 83500 | 0.0 |
0.5581 | 84000 | 0.0 |
0.5615 | 84500 | 0.0 |
0.5648 | 85000 | 0.0 |
0.5681 | 85500 | 0.0 |
0.5714 | 86000 | 0.0 |
0.5747 | 86500 | 0.0 |
0.5781 | 87000 | 0.0 |
0.5814 | 87500 | 0.0 |
0.5847 | 88000 | 0.0 |
0.5880 | 88500 | 0.0 |
0.5914 | 89000 | 0.0 |
0.5947 | 89500 | 0.0 |
0.5980 | 90000 | 0.0 |
0.6013 | 90500 | 0.0 |
0.6046 | 91000 | 0.0 |
0.6080 | 91500 | 0.0 |
0.6113 | 92000 | 0.0 |
0.6146 | 92500 | 0.0 |
0.6179 | 93000 | 0.0 |
0.6213 | 93500 | 0.0 |
0.6246 | 94000 | 0.0 |
0.6279 | 94500 | 0.0 |
0.6312 | 95000 | 0.0 |
0.6345 | 95500 | 0.0 |
0.6379 | 96000 | 0.0 |
0.6412 | 96500 | 0.0 |
0.6445 | 97000 | 0.0 |
0.6478 | 97500 | 0.0 |
0.6511 | 98000 | 0.0 |
0.6545 | 98500 | 0.0 |
0.6578 | 99000 | 0.0 |
0.6611 | 99500 | 0.0 |
0.6644 | 100000 | 0.0 |
0.6678 | 100500 | 0.0 |
0.6711 | 101000 | 0.0 |
0.6744 | 101500 | 0.0 |
0.6777 | 102000 | 0.0 |
0.6810 | 102500 | 0.0 |
0.6844 | 103000 | 0.0 |
0.6877 | 103500 | 0.0 |
0.6910 | 104000 | 0.0 |
0.6943 | 104500 | 0.0 |
0.6977 | 105000 | 0.0 |
0.7010 | 105500 | 0.0 |
0.7043 | 106000 | 0.0 |
0.7076 | 106500 | 0.0 |
0.7109 | 107000 | 0.0 |
0.7143 | 107500 | 0.0 |
0.7176 | 108000 | 0.0 |
0.7209 | 108500 | 0.0 |
0.7242 | 109000 | 0.0 |
0.7276 | 109500 | 0.0 |
0.7309 | 110000 | 0.0 |
0.7342 | 110500 | 0.0 |
0.7375 | 111000 | 0.0 |
0.7408 | 111500 | 0.0 |
0.7442 | 112000 | 0.0 |
0.7475 | 112500 | 0.0 |
0.7508 | 113000 | 0.0 |
0.7541 | 113500 | 0.0 |
0.7575 | 114000 | 0.0 |
0.7608 | 114500 | 0.0 |
0.7641 | 115000 | 0.0 |
0.7674 | 115500 | 0.0 |
0.7707 | 116000 | 0.0 |
0.7741 | 116500 | 0.0 |
0.7774 | 117000 | 0.0 |
0.7807 | 117500 | 0.0 |
0.7840 | 118000 | 0.0 |
0.7874 | 118500 | 0.0 |
0.7907 | 119000 | 0.0 |
0.7940 | 119500 | 0.0 |
0.7973 | 120000 | 0.0 |
0.8006 | 120500 | 0.0 |
0.8040 | 121000 | 0.0 |
0.8073 | 121500 | 0.0 |
0.8106 | 122000 | 0.0 |
0.8139 | 122500 | 0.0 |
0.8173 | 123000 | 0.0 |
0.8206 | 123500 | 0.0 |
0.8239 | 124000 | 0.0 |
0.8272 | 124500 | 0.0 |
0.8305 | 125000 | 0.0 |
0.8339 | 125500 | 0.0 |
0.8372 | 126000 | 0.0 |
0.8405 | 126500 | 0.0 |
0.8438 | 127000 | 0.0 |
0.8472 | 127500 | 0.0 |
0.8505 | 128000 | 0.0 |
0.8538 | 128500 | 0.0 |
0.8571 | 129000 | 0.0 |
0.8604 | 129500 | 0.0 |
0.8638 | 130000 | 0.0 |
0.8671 | 130500 | 0.0 |
0.8704 | 131000 | 0.0 |
0.8737 | 131500 | 0.0 |
0.8771 | 132000 | 0.0 |
0.8804 | 132500 | 0.0 |
0.8837 | 133000 | 0.0 |
0.8870 | 133500 | 0.0 |
0.8903 | 134000 | 0.0 |
0.8937 | 134500 | 0.0 |
0.8970 | 135000 | 0.0 |
0.9003 | 135500 | 0.0 |
0.9036 | 136000 | 0.0 |
0.9070 | 136500 | 0.0 |
0.9103 | 137000 | 0.0 |
0.9136 | 137500 | 0.0 |
0.9169 | 138000 | 0.0 |
0.9202 | 138500 | 0.0 |
0.9236 | 139000 | 0.0 |
0.9269 | 139500 | 0.0 |
0.9302 | 140000 | 0.0 |
0.9335 | 140500 | 0.0 |
0.9369 | 141000 | 0.0 |
0.9402 | 141500 | 0.0 |
0.9435 | 142000 | 0.0 |
0.9468 | 142500 | 0.0 |
0.9501 | 143000 | 0.0 |
0.9535 | 143500 | 0.0 |
0.9568 | 144000 | 0.0 |
0.9601 | 144500 | 0.0 |
0.9634 | 145000 | 0.0 |
0.9668 | 145500 | 0.0 |
0.9701 | 146000 | 0.0 |
0.9734 | 146500 | 0.0 |
0.9767 | 147000 | 0.0 |
0.9800 | 147500 | 0.0 |
0.9834 | 148000 | 0.0 |
0.9867 | 148500 | 0.0 |
0.9900 | 149000 | 0.0 |
0.9933 | 149500 | 0.0 |
0.9967 | 150000 | 0.0 |
1.0000 | 150500 | 0.0 |
1.0033 | 151000 | 0.0 |
1.0066 | 151500 | 0.0 |
1.0099 | 152000 | 0.0 |
1.0133 | 152500 | 0.0 |
1.0166 | 153000 | 0.0 |
1.0199 | 153500 | 0.0 |
1.0232 | 154000 | 0.0 |
1.0266 | 154500 | 0.0 |
1.0299 | 155000 | 0.0 |
1.0332 | 155500 | 0.0 |
1.0365 | 156000 | 0.0 |
1.0398 | 156500 | 0.0 |
1.0432 | 157000 | 0.0 |
1.0465 | 157500 | 0.0 |
1.0498 | 158000 | 0.0 |
1.0531 | 158500 | 0.0 |
1.0565 | 159000 | 0.0 |
1.0598 | 159500 | 0.0 |
1.0631 | 160000 | 0.0 |
1.0664 | 160500 | 0.0 |
1.0697 | 161000 | 0.0 |
1.0731 | 161500 | 0.0 |
1.0764 | 162000 | 0.0 |
1.0797 | 162500 | 0.0 |
1.0830 | 163000 | 0.0 |
1.0864 | 163500 | 0.0 |
1.0897 | 164000 | 0.0 |
1.0930 | 164500 | 0.0 |
1.0963 | 165000 | 0.0 |
1.0996 | 165500 | 0.0 |
1.1030 | 166000 | 0.0 |
1.1063 | 166500 | 0.0 |
1.1096 | 167000 | 0.0 |
1.1129 | 167500 | 0.0 |
1.1163 | 168000 | 0.0 |
1.1196 | 168500 | 0.0 |
1.1229 | 169000 | 0.0 |
1.1262 | 169500 | 0.0 |
1.1295 | 170000 | 0.0 |
1.1329 | 170500 | 0.0 |
1.1362 | 171000 | 0.0 |
1.1395 | 171500 | 0.0 |
1.1428 | 172000 | 0.0 |
1.1462 | 172500 | 0.0 |
1.1495 | 173000 | 0.0 |
1.1528 | 173500 | 0.0 |
1.1561 | 174000 | 0.0 |
1.1594 | 174500 | 0.0 |
1.1628 | 175000 | 0.0 |
1.1661 | 175500 | 0.0 |
1.1694 | 176000 | 0.0 |
1.1727 | 176500 | 0.0 |
1.1761 | 177000 | 0.0 |
1.1794 | 177500 | 0.0 |
1.1827 | 178000 | 0.0 |
1.1860 | 178500 | 0.0 |
1.1893 | 179000 | 0.0 |
1.1927 | 179500 | 0.0 |
1.1960 | 180000 | 0.0 |
1.1993 | 180500 | 0.0 |
1.2026 | 181000 | 0.0 |
1.2060 | 181500 | 0.0 |
1.2093 | 182000 | 0.0 |
1.2126 | 182500 | 0.0 |
1.2159 | 183000 | 0.0 |
1.2192 | 183500 | 0.0 |
1.2226 | 184000 | 0.0 |
1.2259 | 184500 | 0.0 |
1.2292 | 185000 | 0.0 |
1.2325 | 185500 | 0.0 |
1.2359 | 186000 | 0.0 |
1.2392 | 186500 | 0.0 |
1.2425 | 187000 | 0.0 |
1.2458 | 187500 | 0.0 |
1.2491 | 188000 | 0.0 |
1.2525 | 188500 | 0.0 |
1.2558 | 189000 | 0.0 |
1.2591 | 189500 | 0.0 |
1.2624 | 190000 | 0.0 |
1.2658 | 190500 | 0.0 |
1.2691 | 191000 | 0.0 |
1.2724 | 191500 | 0.0 |
1.2757 | 192000 | 0.0 |
1.2790 | 192500 | 0.0 |
1.2824 | 193000 | 0.0 |
1.2857 | 193500 | 0.0 |
1.2890 | 194000 | 0.0 |
1.2923 | 194500 | 0.0 |
1.2957 | 195000 | 0.0 |
1.2990 | 195500 | 0.0 |
1.3023 | 196000 | 0.0 |
1.3056 | 196500 | 0.0 |
1.3089 | 197000 | 0.0 |
1.3123 | 197500 | 0.0 |
1.3156 | 198000 | 0.0 |
1.3189 | 198500 | 0.0 |
1.3222 | 199000 | 0.0 |
1.3256 | 199500 | 0.0 |
1.3289 | 200000 | 0.0 |
1.3322 | 200500 | 0.0 |
1.3355 | 201000 | 0.0 |
1.3388 | 201500 | 0.0 |
1.3422 | 202000 | 0.0 |
1.3455 | 202500 | 0.0 |
1.3488 | 203000 | 0.0 |
1.3521 | 203500 | 0.0 |
1.3555 | 204000 | 0.0 |
1.3588 | 204500 | 0.0 |
1.3621 | 205000 | 0.0 |
1.3654 | 205500 | 0.0 |
1.3687 | 206000 | 0.0 |
1.3721 | 206500 | 0.0 |
1.3754 | 207000 | 0.0 |
1.3787 | 207500 | 0.0 |
1.3820 | 208000 | 0.0 |
1.3854 | 208500 | 0.0 |
1.3887 | 209000 | 0.0 |
1.3920 | 209500 | 0.0 |
1.3953 | 210000 | 0.0 |
1.3986 | 210500 | 0.0 |
1.4020 | 211000 | 0.0 |
1.4053 | 211500 | 0.0 |
1.4086 | 212000 | 0.0 |
1.4119 | 212500 | 0.0 |
1.4153 | 213000 | 0.0 |
1.4186 | 213500 | 0.0 |
1.4219 | 214000 | 0.0 |
1.4252 | 214500 | 0.0 |
1.4285 | 215000 | 0.0 |
1.4319 | 215500 | 0.0 |
1.4352 | 216000 | 0.0 |
1.4385 | 216500 | 0.0 |
1.4418 | 217000 | 0.0 |
1.4452 | 217500 | 0.0 |
1.4485 | 218000 | 0.0 |
1.4518 | 218500 | 0.0 |
1.4551 | 219000 | 0.0 |
1.4584 | 219500 | 0.0 |
1.4618 | 220000 | 0.0 |
1.4651 | 220500 | 0.0 |
1.4684 | 221000 | 0.0 |
1.4717 | 221500 | 0.0 |
1.4751 | 222000 | 0.0 |
1.4784 | 222500 | 0.0 |
1.4817 | 223000 | 0.0 |
1.4850 | 223500 | 0.0 |
1.4883 | 224000 | 0.0 |
1.4917 | 224500 | 0.0 |
1.4950 | 225000 | 0.0 |
1.4983 | 225500 | 0.0 |
1.5016 | 226000 | 0.0 |
1.5050 | 226500 | 0.0 |
1.5083 | 227000 | 0.0 |
1.5116 | 227500 | 0.0 |
1.5149 | 228000 | 0.0 |
1.5182 | 228500 | 0.0 |
1.5216 | 229000 | 0.0 |
1.5249 | 229500 | 0.0 |
1.5282 | 230000 | 0.0 |
1.5315 | 230500 | 0.0 |
1.5349 | 231000 | 0.0 |
1.5382 | 231500 | 0.0 |
1.5415 | 232000 | 0.0 |
1.5448 | 232500 | 0.0 |
1.5481 | 233000 | 0.0 |
1.5515 | 233500 | 0.0 |
1.5548 | 234000 | 0.0 |
1.5581 | 234500 | 0.0 |
1.5614 | 235000 | 0.0 |
1.5648 | 235500 | 0.0 |
1.5681 | 236000 | 0.0 |
1.5714 | 236500 | 0.0 |
1.5747 | 237000 | 0.0 |
1.5780 | 237500 | 0.0 |
1.5814 | 238000 | 0.0 |
1.5847 | 238500 | 0.0 |
1.5880 | 239000 | 0.0 |
1.5913 | 239500 | 0.0 |
1.5947 | 240000 | 0.0 |
1.5980 | 240500 | 0.0 |
1.6013 | 241000 | 0.0 |
1.6046 | 241500 | 0.0 |
1.6079 | 242000 | 0.0 |
1.6113 | 242500 | 0.0 |
1.6146 | 243000 | 0.0 |
1.6179 | 243500 | 0.0 |
1.6212 | 244000 | 0.0 |
1.6246 | 244500 | 0.0 |
1.6279 | 245000 | 0.0 |
1.6312 | 245500 | 0.0 |
1.6345 | 246000 | 0.0 |
1.6378 | 246500 | 0.0 |
1.6412 | 247000 | 0.0 |
1.6445 | 247500 | 0.0 |
1.6478 | 248000 | 0.0 |
1.6511 | 248500 | 0.0 |
1.6545 | 249000 | 0.0 |
1.6578 | 249500 | 0.0 |
1.6611 | 250000 | 0.0 |
1.6644 | 250500 | 0.0 |
1.6677 | 251000 | 0.0 |
1.6711 | 251500 | 0.0 |
1.6744 | 252000 | 0.0 |
1.6777 | 252500 | 0.0 |
1.6810 | 253000 | 0.0 |
1.6844 | 253500 | 0.0 |
1.6877 | 254000 | 0.0 |
1.6910 | 254500 | 0.0 |
1.6943 | 255000 | 0.0 |
1.6976 | 255500 | 0.0 |
1.7010 | 256000 | 0.0 |
1.7043 | 256500 | 0.0 |
1.7076 | 257000 | 0.0 |
1.7109 | 257500 | 0.0 |
1.7143 | 258000 | 0.0 |
1.7176 | 258500 | 0.0 |
1.7209 | 259000 | 0.0 |
1.7242 | 259500 | 0.0 |
1.7275 | 260000 | 0.0 |
1.7309 | 260500 | 0.0 |
1.7342 | 261000 | 0.0 |
1.7375 | 261500 | 0.0 |
1.7408 | 262000 | 0.0 |
1.7442 | 262500 | 0.0 |
1.7475 | 263000 | 0.0 |
1.7508 | 263500 | 0.0 |
1.7541 | 264000 | 0.0 |
1.7574 | 264500 | 0.0 |
1.7608 | 265000 | 0.0 |
1.7641 | 265500 | 0.0 |
1.7674 | 266000 | 0.0 |
1.7707 | 266500 | 0.0 |
1.7741 | 267000 | 0.0 |
1.7774 | 267500 | 0.0 |
1.7807 | 268000 | 0.0 |
1.7840 | 268500 | 0.0 |
1.7873 | 269000 | 0.0 |
1.7907 | 269500 | 0.0 |
1.7940 | 270000 | 0.0 |
1.7973 | 270500 | 0.0 |
1.8006 | 271000 | 0.0 |
1.8040 | 271500 | 0.0 |
1.8073 | 272000 | 0.0 |
1.8106 | 272500 | 0.0 |
1.8139 | 273000 | 0.0 |
1.8172 | 273500 | 0.0 |
1.8206 | 274000 | 0.0 |
1.8239 | 274500 | 0.0 |
1.8272 | 275000 | 0.0 |
1.8305 | 275500 | 0.0 |
1.8339 | 276000 | 0.0 |
1.8372 | 276500 | 0.0 |
1.8405 | 277000 | 0.0 |
1.8438 | 277500 | 0.0 |
1.8471 | 278000 | 0.0 |
1.8505 | 278500 | 0.0 |
1.8538 | 279000 | 0.0 |
1.8571 | 279500 | 0.0 |
1.8604 | 280000 | 0.0 |
1.8638 | 280500 | 0.0 |
1.8671 | 281000 | 0.0 |
1.8704 | 281500 | 0.0 |
1.8737 | 282000 | 0.0 |
1.8770 | 282500 | 0.0 |
1.8804 | 283000 | 0.0 |
1.8837 | 283500 | 0.0 |
1.8870 | 284000 | 0.0 |
1.8903 | 284500 | 0.0 |
1.8936 | 285000 | 0.0 |
1.8970 | 285500 | 0.0 |
1.9003 | 286000 | 0.0 |
1.9036 | 286500 | 0.0 |
1.9069 | 287000 | 0.0 |
1.9103 | 287500 | 0.0 |
1.9136 | 288000 | 0.0 |
1.9169 | 288500 | 0.0 |
1.9202 | 289000 | 0.0 |
1.9235 | 289500 | 0.0 |
1.9269 | 290000 | 0.0 |
1.9302 | 290500 | 0.0 |
1.9335 | 291000 | 0.0 |
1.9368 | 291500 | 0.0 |
1.9402 | 292000 | 0.0 |
1.9435 | 292500 | 0.0 |
1.9468 | 293000 | 0.0 |
1.9501 | 293500 | 0.0 |
1.9534 | 294000 | 0.0 |
1.9568 | 294500 | 0.0 |
1.9601 | 295000 | 0.0 |
1.9634 | 295500 | 0.0 |
1.9667 | 296000 | 0.0 |
1.9701 | 296500 | 0.0 |
1.9734 | 297000 | 0.0 |
1.9767 | 297500 | 0.0 |
1.9800 | 298000 | 0.0 |
1.9833 | 298500 | 0.0 |
1.9867 | 299000 | 0.0 |
1.9900 | 299500 | 0.0 |
1.9933 | 300000 | 0.0 |
1.9966 | 300500 | 0.0 |
2.0000 | 301000 | 0.0 |
2.0033 | 301500 | 0.0 |
2.0066 | 302000 | 0.0 |
2.0099 | 302500 | 0.0 |
2.0132 | 303000 | 0.0 |
2.0166 | 303500 | 0.0 |
2.0199 | 304000 | 0.0 |
2.0232 | 304500 | 0.0 |
2.0265 | 305000 | 0.0 |
2.0299 | 305500 | 0.0 |
2.0332 | 306000 | 0.0 |
2.0365 | 306500 | 0.0 |
2.0398 | 307000 | 0.0 |
2.0431 | 307500 | 0.0 |
2.0465 | 308000 | 0.0 |
2.0498 | 308500 | 0.0 |
2.0531 | 309000 | 0.0 |
2.0564 | 309500 | 0.0 |
2.0598 | 310000 | 0.0 |
2.0631 | 310500 | 0.0 |
2.0664 | 311000 | 0.0 |
2.0697 | 311500 | 0.0 |
2.0730 | 312000 | 0.0 |
2.0764 | 312500 | 0.0 |
2.0797 | 313000 | 0.0 |
2.0830 | 313500 | 0.0 |
2.0863 | 314000 | 0.0 |
2.0897 | 314500 | 0.0 |
2.0930 | 315000 | 0.0 |
2.0963 | 315500 | 0.0 |
2.0996 | 316000 | 0.0 |
2.1029 | 316500 | 0.0 |
2.1063 | 317000 | 0.0 |
2.1096 | 317500 | 0.0 |
2.1129 | 318000 | 0.0 |
2.1162 | 318500 | 0.0 |
2.1196 | 319000 | 0.0 |
2.1229 | 319500 | 0.0 |
2.1262 | 320000 | 0.0 |
2.1295 | 320500 | 0.0 |
2.1328 | 321000 | 0.0 |
2.1362 | 321500 | 0.0 |
2.1395 | 322000 | 0.0 |
2.1428 | 322500 | 0.0 |
2.1461 | 323000 | 0.0 |
2.1495 | 323500 | 0.0 |
2.1528 | 324000 | 0.0 |
2.1561 | 324500 | 0.0 |
2.1594 | 325000 | 0.0 |
2.1627 | 325500 | 0.0 |
2.1661 | 326000 | 0.0 |
2.1694 | 326500 | 0.0 |
2.1727 | 327000 | 0.0 |
2.1760 | 327500 | 0.0 |
2.1794 | 328000 | 0.0 |
2.1827 | 328500 | 0.0 |
2.1860 | 329000 | 0.0 |
2.1893 | 329500 | 0.0 |
2.1926 | 330000 | 0.0 |
2.1960 | 330500 | 0.0 |
2.1993 | 331000 | 0.0 |
2.2026 | 331500 | 0.0 |
2.2059 | 332000 | 0.0 |
2.2093 | 332500 | 0.0 |
2.2126 | 333000 | 0.0 |
2.2159 | 333500 | 0.0 |
2.2192 | 334000 | 0.0 |
2.2225 | 334500 | 0.0 |
2.2259 | 335000 | 0.0 |
2.2292 | 335500 | 0.0 |
2.2325 | 336000 | 0.0 |
2.2358 | 336500 | 0.0 |
2.2392 | 337000 | 0.0 |
2.2425 | 337500 | 0.0 |
2.2458 | 338000 | 0.0 |
2.2491 | 338500 | 0.0 |
2.2524 | 339000 | 0.0 |
2.2558 | 339500 | 0.0 |
2.2591 | 340000 | 0.0 |
2.2624 | 340500 | 0.0 |
2.2657 | 341000 | 0.0 |
2.2691 | 341500 | 0.0 |
2.2724 | 342000 | 0.0 |
2.2757 | 342500 | 0.0 |
2.2790 | 343000 | 0.0 |
2.2823 | 343500 | 0.0 |
2.2857 | 344000 | 0.0 |
2.2890 | 344500 | 0.0 |
2.2923 | 345000 | 0.0 |
2.2956 | 345500 | 0.0 |
2.2990 | 346000 | 0.0 |
2.3023 | 346500 | 0.0 |
2.3056 | 347000 | 0.0 |
2.3089 | 347500 | 0.0 |
2.3122 | 348000 | 0.0 |
2.3156 | 348500 | 0.0 |
2.3189 | 349000 | 0.0 |
2.3222 | 349500 | 0.0 |
2.3255 | 350000 | 0.0 |
2.3289 | 350500 | 0.0 |
2.3322 | 351000 | 0.0 |
2.3355 | 351500 | 0.0 |
2.3388 | 352000 | 0.0 |
2.3421 | 352500 | 0.0 |
2.3455 | 353000 | 0.0 |
2.3488 | 353500 | 0.0 |
2.3521 | 354000 | 0.0 |
2.3554 | 354500 | 0.0 |
2.3588 | 355000 | 0.0 |
2.3621 | 355500 | 0.0 |
2.3654 | 356000 | 0.0 |
2.3687 | 356500 | 0.0 |
2.3720 | 357000 | 0.0 |
2.3754 | 357500 | 0.0 |
2.3787 | 358000 | 0.0 |
2.3820 | 358500 | 0.0 |
2.3853 | 359000 | 0.0 |
2.3887 | 359500 | 0.0 |
2.3920 | 360000 | 0.0 |
2.3953 | 360500 | 0.0 |
2.3986 | 361000 | 0.0 |
2.4019 | 361500 | 0.0 |
2.4053 | 362000 | 0.0 |
2.4086 | 362500 | 0.0 |
2.4119 | 363000 | 0.0 |
2.4152 | 363500 | 0.0 |
2.4186 | 364000 | 0.0 |
2.4219 | 364500 | 0.0 |
2.4252 | 365000 | 0.0 |
2.4285 | 365500 | 0.0 |
2.4318 | 366000 | 0.0 |
2.4352 | 366500 | 0.0 |
2.4385 | 367000 | 0.0 |
2.4418 | 367500 | 0.0 |
2.4451 | 368000 | 0.0 |
2.4485 | 368500 | 0.0 |
2.4518 | 369000 | 0.0 |
2.4551 | 369500 | 0.0 |
2.4584 | 370000 | 0.0 |
2.4617 | 370500 | 0.0 |
2.4651 | 371000 | 0.0 |
2.4684 | 371500 | 0.0 |
2.4717 | 372000 | 0.0 |
2.4750 | 372500 | 0.0 |
2.4784 | 373000 | 0.0 |
2.4817 | 373500 | 0.0 |
2.4850 | 374000 | 0.0 |
2.4883 | 374500 | 0.0 |
2.4916 | 375000 | 0.0 |
2.4950 | 375500 | 0.0 |
2.4983 | 376000 | 0.0 |
2.5016 | 376500 | 0.0 |
2.5049 | 377000 | 0.0 |
2.5083 | 377500 | 0.0 |
2.5116 | 378000 | 0.0 |
2.5149 | 378500 | 0.0 |
2.5182 | 379000 | 0.0 |
2.5215 | 379500 | 0.0 |
2.5249 | 380000 | 0.0 |
2.5282 | 380500 | 0.0 |
2.5315 | 381000 | 0.0 |
2.5348 | 381500 | 0.0 |
2.5382 | 382000 | 0.0 |
2.5415 | 382500 | 0.0 |
2.5448 | 383000 | 0.0 |
2.5481 | 383500 | 0.0 |
2.5514 | 384000 | 0.0 |
2.5548 | 384500 | 0.0 |
2.5581 | 385000 | 0.0 |
2.5614 | 385500 | 0.0 |
2.5647 | 386000 | 0.0 |
2.5681 | 386500 | 0.0 |
2.5714 | 387000 | 0.0 |
2.5747 | 387500 | 0.0 |
2.5780 | 388000 | 0.0 |
2.5813 | 388500 | 0.0 |
2.5847 | 389000 | 0.0 |
2.5880 | 389500 | 0.0 |
2.5913 | 390000 | 0.0 |
2.5946 | 390500 | 0.0 |
2.5980 | 391000 | 0.0 |
2.6013 | 391500 | 0.0 |
2.6046 | 392000 | 0.0 |
2.6079 | 392500 | 0.0 |
2.6112 | 393000 | 0.0 |
2.6146 | 393500 | 0.0 |
2.6179 | 394000 | 0.0 |
2.6212 | 394500 | 0.0 |
2.6245 | 395000 | 0.0 |
2.6279 | 395500 | 0.0 |
2.6312 | 396000 | 0.0 |
2.6345 | 396500 | 0.0 |
2.6378 | 397000 | 0.0 |
2.6411 | 397500 | 0.0 |
2.6445 | 398000 | 0.0 |
2.6478 | 398500 | 0.0 |
2.6511 | 399000 | 0.0 |
2.6544 | 399500 | 0.0 |
2.6578 | 400000 | 0.0 |
2.6611 | 400500 | 0.0 |
2.6644 | 401000 | 0.0 |
2.6677 | 401500 | 0.0 |
2.6710 | 402000 | 0.0 |
2.6744 | 402500 | 0.0 |
2.6777 | 403000 | 0.0 |
2.6810 | 403500 | 0.0 |
2.6843 | 404000 | 0.0 |
2.6877 | 404500 | 0.0 |
2.6910 | 405000 | 0.0 |
2.6943 | 405500 | 0.0 |
2.6976 | 406000 | 0.0 |
2.7009 | 406500 | 0.0 |
2.7043 | 407000 | 0.0 |
2.7076 | 407500 | 0.0 |
2.7109 | 408000 | 0.0 |
2.7142 | 408500 | 0.0 |
2.7176 | 409000 | 0.0 |
2.7209 | 409500 | 0.0 |
2.7242 | 410000 | 0.0 |
2.7275 | 410500 | 0.0 |
2.7308 | 411000 | 0.0 |
2.7342 | 411500 | 0.0 |
2.7375 | 412000 | 0.0 |
2.7408 | 412500 | 0.0 |
2.7441 | 413000 | 0.0 |
2.7475 | 413500 | 0.0 |
2.7508 | 414000 | 0.0 |
2.7541 | 414500 | 0.0 |
2.7574 | 415000 | 0.0 |
2.7607 | 415500 | 0.0 |
2.7641 | 416000 | 0.0 |
2.7674 | 416500 | 0.0 |
2.7707 | 417000 | 0.0 |
2.7740 | 417500 | 0.0 |
2.7774 | 418000 | 0.0 |
2.7807 | 418500 | 0.0 |
2.7840 | 419000 | 0.0 |
2.7873 | 419500 | 0.0 |
2.7906 | 420000 | 0.0 |
2.7940 | 420500 | 0.0 |
2.7973 | 421000 | 0.0 |
2.8006 | 421500 | 0.0 |
2.8039 | 422000 | 0.0 |
2.8073 | 422500 | 0.0 |
2.8106 | 423000 | 0.0 |
2.8139 | 423500 | 0.0 |
2.8172 | 424000 | 0.0 |
2.8205 | 424500 | 0.0 |
2.8239 | 425000 | 0.0 |
2.8272 | 425500 | 0.0 |
2.8305 | 426000 | 0.0 |
2.8338 | 426500 | 0.0 |
2.8372 | 427000 | 0.0 |
2.8405 | 427500 | 0.0 |
2.8438 | 428000 | 0.0 |
2.8471 | 428500 | 0.0 |
2.8504 | 429000 | 0.0 |
2.8538 | 429500 | 0.0 |
2.8571 | 430000 | 0.0 |
2.8604 | 430500 | 0.0 |
2.8637 | 431000 | 0.0 |
2.8671 | 431500 | 0.0 |
2.8704 | 432000 | 0.0 |
2.8737 | 432500 | 0.0 |
2.8770 | 433000 | 0.0 |
2.8803 | 433500 | 0.0 |
2.8837 | 434000 | 0.0 |
2.8870 | 434500 | 0.0 |
2.8903 | 435000 | 0.0 |
2.8936 | 435500 | 0.0 |
2.8970 | 436000 | 0.0 |
2.9003 | 436500 | 0.0 |
2.9036 | 437000 | 0.0 |
2.9069 | 437500 | 0.0 |
2.9102 | 438000 | 0.0 |
2.9136 | 438500 | 0.0 |
2.9169 | 439000 | 0.0 |
2.9202 | 439500 | 0.0 |
2.9235 | 440000 | 0.0 |
2.9269 | 440500 | 0.0 |
2.9302 | 441000 | 0.0 |
2.9335 | 441500 | 0.0 |
2.9368 | 442000 | 0.0 |
2.9401 | 442500 | 0.0 |
2.9435 | 443000 | 0.0 |
2.9468 | 443500 | 0.0 |
2.9501 | 444000 | 0.0 |
2.9534 | 444500 | 0.0 |
2.9568 | 445000 | 0.0 |
2.9601 | 445500 | 0.0 |
2.9634 | 446000 | 0.0 |
2.9667 | 446500 | 0.0 |
2.9700 | 447000 | 0.0 |
2.9734 | 447500 | 0.0 |
2.9767 | 448000 | 0.0 |
2.9800 | 448500 | 0.0 |
2.9833 | 449000 | 0.0 |
2.9867 | 449500 | 0.0 |
2.9900 | 450000 | 0.0 |
2.9933 | 450500 | 0.0 |
2.9966 | 451000 | 0.0 |
2.9999 | 451500 | 0.0 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Dataologist/gte_large_op
Base model
thenlper/gte-large