David0702 commited on
Commit
b66b630
·
1 Parent(s): 21e2156

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 250.18 +/- 49.22
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 284.09 +/- 16.73
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e092846d040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e092846d0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e092846d160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e092846d1f0>", "_build": "<function ActorCriticPolicy._build at 0x7e092846d280>", "forward": "<function ActorCriticPolicy.forward at 0x7e092846d310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e092846d3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e092846d430>", "_predict": "<function ActorCriticPolicy._predict at 0x7e092846d4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e092846d550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e092846d5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e092846d670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7e0928468480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714477529914229117, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACGMTzP7he83BqPvHDGI72iDg+9s6bYvgAAgD8AAIA/gLGqvVCa5D7zsQ8+yveGvh4neL3uEQE+AAAAAAAAAACzFmC9Hh2FP1ba4bxXiby+c+/gvZmsuj0AAAAAAAAAAABvzT096Bq7Lf8lvkvYi72rkTG7YeiOPAAAgD8AAIA/GmQJvbgsujz64nU9pEb1vZ65cD24DiM9AAAAAAAAAAAAqQg9vFIaPy2m3L1yEHu+U9nEvKU1AbwAAAAAAAAAAOYgUL6MXoU/EeRGvPGyw74b8Tq+FfCDPgAAAAAAAAAAGkpSPR9l+7kbnEszIna4KhAP3Lt1o9SzAACAPwAAgD/zmoO9HqP7PSLF9zz3ZGC+vq4Qu99otj0AAAAAAAAAAKB0Xz6DqUY/wFInPj6Hsr6Mqy8+Os5gvQAAAAAAAAAAM+mSvHHbN7ueMAQ7ZBWNPMIzhLwtMnM9AACAPwAAgD+2Q1q+r/cAP5BFTD4vx62+ih34PCZInD0AAAAAAAAAAACn/TwFOVg+Ok3cPI3Ll76HdaY8pv8DPgAAAAAAAAAAGlaIvfZsALpC9Nw68zbkNU1/ULq+4gC6AAAAAAAAgD+zaL69wz0EupNrQjRsbiOuWSD8utFSqLMAAIA/AACAP8sPjr5gsJk/1npkvgqhlr6TV9m+jOamPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAumAbyYomMAWyUTS4BjAF0lEdAfMsK64Ds+nV9lChoBkdAcNIhmoR7JGgHTU8BaAhHQHzLoVIqbz91fZQoaAZHQGu1mQjlgc9oB01ZAWgIR0B8zWjfvWpZdX2UKGgGR0BszsOkLx7RaAdNOAFoCEdAfM9KfFrEcnV9lChoBkdAbQbUJfICEGgHTSMBaAhHQHzQjbWVeKN1fZQoaAZHQG9UvLPldTpoB03VAmgIR0B80LVhCtzTdX2UKGgGR0BuqEnuy/sWaAdNOAFoCEdAfNHPn0TURXV9lChoBkdAbph0lJHy3GgHTTABaAhHQHzSmcOLBKt1fZQoaAZHQG/uAKneiztoB002AWgIR0B8/Gqp97WvdX2UKGgGR0BvIcxXXAdoaAdNGAFoCEdAfPyt7KJVKnV9lChoBkdAcczcXFcY7GgHTUIBaAhHQHz9SFXaJyh1fZQoaAZHQHCj+oLofSxoB00PAWgIR0B8/0oLG7z1dX2UKGgGR0BxQW2tuDSPaAdNTgFoCEdAfQB32VVxTHV9lChoBkdAcX+Lsa86FWgHTRUCaAhHQH0CcTviLl51fZQoaAZHQHIA1/YrauhoB01yAWgIR0B9BJPwd8zAdX2UKGgGR0ByCa3PRiPRaAdNMwFoCEdAfQWhQFcIJXV9lChoBkdAcXcU5+6RQ2gHTSIBaAhHQH0GKreZXuF1fZQoaAZHQHCsSXlbNbFoB01hAWgIR0B9Bktbs4T9dX2UKGgGR0Bx+0Sh8IAwaAdNvAFoCEdAfQhtMfzSTnV9lChoBkdAcT1HOKO1fGgHTWcBaAhHQH0JxpHqeK91fZQoaAZHQHK2vepGWldoB01VAWgIR0B9CjufEn9fdX2UKGgGR0Busj/GVAzIaAdNTAFoCEdAfQqgydnTRnV9lChoBkdAb4AV1Oj7AWgHTRIBaAhHQH0MgG0NSZV1fZQoaAZHQHCKQjY7JXBoB00QAWgIR0B9DO13MY/FdX2UKGgGR0BrSoemvW6LaAdNWwFoCEdAfRBWe6I3znV9lChoBkdAcOVBuXNTtWgHTS0BaAhHQH0RkxREWqN1fZQoaAZHQG5m9E1EVnFoB00RAWgIR0B9Ed1uBMBZdX2UKGgGR0BzNUM2FWXDaAdNVAFoCEdAfRKXLeQ+2XV9lChoBkdAcgiLeANG3GgHTQMBaAhHQH0S9qL0jC51fZQoaAZHQF5ZUbT+ee5oB03oA2gIR0B9F6p5u63BdX2UKGgGR0BxOPUZvUBoaAdNTAFoCEdAfRvP1tfoinV9lChoBkdAcFMKdhAnlWgHTRcBaAhHQH0dcXrMTvl1fZQoaAZHQG4SWx6fJ3hoB00jAWgIR0B9Hur0aqCIdX2UKGgGR0BsQ8riEQGwaAdNVAFoCEdAfR9IMz/IbXV9lChoBkdAcOkSvkili2gHTWUBaAhHQH0fayjYZl51fZQoaAZHQF+UO0LMLWtoB03oA2gIR0B9IDbpNbkfdX2UKGgGR0Bw/aPyTY/WaAdNDQFoCEdAfSRkT6BRRHV9lChoBkdAcRB0/4ZdfWgHTTgBaAhHQH0lh1oxpL51fZQoaAZHQGzGtfgJkXloB007AWgIR0B9JvjzZpSKdX2UKGgGR0BvImkadc0MaAdN6gFoCEdAfShjawljVnV9lChoBkdAcEDQDmr8zmgHTX0BaAhHQH0ok8vEjxF1fZQoaAZHQG/FSNfgJkZoB010AWgIR0B9KYp8WsRydX2UKGgGR0BsmYJb+tKaaAdNHAFoCEdAfSpCZF5OanV9lChoBkdAbeaOEM9bHWgHTX4CaAhHQH0sVMdtEXt1fZQoaAZHQHDjDjFQ2uRoB00dAWgIR0B9L6QuEmICdX2UKGgGR0BsUOqYJE6UaAdNGQFoCEdAfS+yuZCv5nV9lChoBkdAcQtovzvqkmgHTU4BaAhHQH0v/W1+iJx1fZQoaAZHQHL3Zw0fozNoB00WAWgIR0B9MEophF3IdX2UKGgGR0ByPM50bLlnaAdNLQFoCEdAfTC938n/k3V9lChoBkdAb30G1QZXMmgHTYEBaAhHQH0zloHs1Kp1fZQoaAZHQG9Dta6jFhpoB00mAWgIR0B9XcSOBDohdX2UKGgGR0BwWeKekHlfaAdNQQFoCEdAfV4PszEaVHV9lChoBkdAcTeWCVbA12gHTSwBaAhHQH1fmD6Fds11fZQoaAZHQG7FGZuyeI5oB000AWgIR0B9X99ORDCxdX2UKGgGR0BwkeQ6p5u7aAdNNwFoCEdAfWEX3xnWa3V9lChoBkdAcAyUY8+zMWgHTZgBaAhHQH1h4NI9TxZ1fZQoaAZHQG6xVcdHUc5oB00nAWgIR0B9Ywy9EkSmdX2UKGgGR0BxKDKnvUjLaAdNUwFoCEdAfWNAp8WsR3V9lChoBkdAccdlsP8Q7WgHTRIBaAhHQH1lZemelKt1fZQoaAZHQG8Uk7W/ag5oB00UAWgIR0B9Zc7ihnJ1dX2UKGgGR0Bi7MLH+6y0aAdN6ANoCEdAfWXcoYvWYnV9lChoBkdAWfgr4FiazGgHTegDaAhHQH1mYw/PgNx1fZQoaAZHQG5e40VJtixoB01DAWgIR0B9Z2PDHfdidX2UKGgGR0BsCk8s+V1PaAdNQwFoCEdAfWdwaBI4EXV9lChoBkdAbs8zl90A92gHTRsBaAhHQH1pCA6Mir11fZQoaAZHQGzMZ6+nIhhoB01cAWgIR0B9aWMBIWgwdX2UKGgGR0Bw8CBClabGaAdNCgFoCEdAfWwrTpgTiHV9lChoBkdAbdNZKWcBl2gHTTkBaAhHQH1tOR1X/5t1fZQoaAZHQG/nblaKUFBoB00WAWgIR0B9bkzeoDPodX2UKGgGR0Bx+4OJ+DvmaAdNYAFoCEdAfW8OFQEZBXV9lChoBkdAcC3d8zAN5WgHTTgBaAhHQH1xB5kbxVh1fZQoaAZHQHHlAbIcR15oB01BAWgIR0B9cy3QUpNLdX2UKGgGR0Bv42z2OAAiaAdNSQFoCEdAfXNvtMPBi3V9lChoBkdAb4DxgAp8W2gHTYcBaAhHQH1zf2Xb/Ot1fZQoaAZHQHAOCrDIikhoB00mAWgIR0B9dJlDneSCdX2UKGgGR0BuY9Kujh1laAdNLgFoCEdAfXUP+n62v3V9lChoBkdAcCt2rGR3eWgHTQ4BaAhHQH11HfEXLvF1fZQoaAZHQHEJKTKT0QNoB00oAWgIR0B9dUrmQr+YdX2UKGgGR0BwEX0HyEteaAdNVAFoCEdAfXZU0Nz8xnV9lChoBkdAbzMDMeOn22gHTUEBaAhHQH13WZ7Xxvx1fZQoaAZHQGwncl5WzWxoB00mAWgIR0B9d9axHG0edX2UKGgGR0Bw//UBnzxxaAdNEgFoCEdAfXnkFwDNhXV9lChoBkdAcf51RLsa9GgHTVgBaAhHQH16SX2M85l1fZQoaAZHQHI9gGGEf1ZoB00lAWgIR0B9fJWQwK0EdX2UKGgGR0BxBwfHPu5SaAdNHAFoCEdAfXzZa3ZwoHV9lChoBkdAcBA+S8rZrmgHTUUBaAhHQH19MRUWEbp1fZQoaAZHQG+ruL74zrNoB00+AWgIR0B9gHocJdB0dX2UKGgGR0BxTI8RtgrpaAdNKAFoCEdAfYGci4axYHV9lChoBkdAcO6XQtz0YmgHTSYBaAhHQH2DX2qT8pF1fZQoaAZHQG+OFM7EHdJoB00oAWgIR0B9g4v6CUX6dX2UKGgGR0Bxv2C4BmwraAdNNQFoCEdAfYO1stTUAnV9lChoBkdAcZAWxhUip2gHTS8BaAhHQH2EKhYeT3Z1fZQoaAZHQHF1Xv2GqPxoB00zAWgIR0B9haOLiuMddX2UKGgGR0BwDdOXVsk6aAdNnQFoCEdAfYhNd7fHgnV9lChoBkdAcmH4c3l0YGgHTREBaAhHQH2IlDv3JxN1fZQoaAZHQG+km51/2CdoB01zAWgIR0B9iq9vjwQUdX2UKGgGR0BwQeKwY+B6aAdN6wFoCEdAfYySBK+SKXV9lChoBkdAbSL0hePaMGgHTScBaAhHQH2NQCKaXrt1fZQoaAZHQHBGQccU/OdoB00oAWgIR0B9jZGlQ/HHdX2UKGgGR0Bwg9mwqy4XaAdNaQFoCEdAfY4WS2Yv4HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.8.0-31-generic-x86_64-with-glibc2.10 # 31-Ubuntu SMP PREEMPT_DYNAMIC Sat Apr 20 00:40:06 UTC 2024", "Python": "3.8.19", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.24.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x76a4d1ce0310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x76a4d1ce03a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x76a4d1ce0430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x76a4d1ce04c0>", "_build": "<function ActorCriticPolicy._build at 0x76a4d1ce0550>", "forward": "<function ActorCriticPolicy.forward at 0x76a4d1ce05e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x76a4d1ce0670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x76a4d1ce0700>", "_predict": "<function ActorCriticPolicy._predict at 0x76a4d1ce0790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x76a4d1ce0820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x76a4d1ce08b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x76a4d1ce0940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x76a4d1ce1120>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714485012985972468, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2JoTxPQRW889YEPnNsjTxgQ4C9AGVrPQAAgD8AAIA/pnhpvmRDfz6uvZ8+Ka6SvlWEiL27UDc9AAAAAAAAAAAzLrA94Uy5ujqwBTzPpI08iypcO+Yvdr0AAIA/AACAP3N80T21l54/KqEcP39GIr+BMpg9/xSxPgAAAAAAAAAAZhASvEgTmLrLLCU4PH0UMz0rmbom+D63AACAPwAAgD/Nila94V6Vui04/jyV8Bu1Op40uwpuGbQAAIA/AACAP8B6sj2H67k+bDcOvvxZ8b4ExYg87lUpvgAAAAAAAAAALf0NPoKVuD6eeWa+0un3vssedTzMsrS9AAAAAAAAAACzEBy9Kah6upLzcLlm8Ga0gk9AO9T3jDgAAIA/AACAPyZ2Ij4niwU/6YI/vt6VAL+Dx9A9HssZvgAAAAAAAAAAMydqPEiWoT7iQnK+1LrUvlfyjb3Ktbm9AAAAAAAAAADmvAO9hvq1Pzm3H787kS49njB4PL6d9bwAAAAAAAAAAJPVRD6lGyE+fqCnvoQIxr40mHK82gO8vQAAAAAAAAAADf8nvqIrrT/CbQO/0SsAv6iOZL7G9Rm9AAAAAAAAAAAavSm915F6u45cEr12bbC9H9QLPf4kMz8AAIA/AACAP5p8zr0LFMo9fgaYPof3Tr7LDbS7IHCKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJn3C0ngHiMAWyUTSkBjAF0lEdAinxpo0ygw3V9lChoBkdAR+/4oJAt4GgHS7doCEdAinz5j6N2knV9lChoBkdAb2reKKpDNWgHS9NoCEdAin0Cy6cy33V9lChoBkdAcQFjRD1GsmgHS+FoCEdAin0JSiudPXV9lChoBkdAcPBycCo0h2gHS8hoCEdAin0PnbItDnV9lChoBkdAcw3PmPo3aWgHS8JoCEdAin0RqGlANXV9lChoBkdAcORqQA+6iGgHS+poCEdAin1KmKqGUXV9lChoBkdAcxUPznRsuWgHS9FoCEdAin1mFSKm9HV9lChoBkdAc2g6/IsAemgHS8hoCEdAin1rnDBMz3V9lChoBkdAcwE0hePaMGgHS9toCEdAin2E43m3fHV9lChoBkdAcrYTuv2XcGgHS9toCEdAin4lGPPszHV9lChoBkdAb/PwhGH58GgHS+VoCEdAin5g/keZHHV9lChoBkdAcZ5G3F1jiGgHS+loCEdAin5lNlAeJnV9lChoBkdAcTASzgMtsmgHS+BoCEdAin5ltTDO1XV9lChoBkdAcfHdf9gndGgHS99oCEdAin7R/ustCnV9lChoBkdAcu/1zySV4WgHS8toCEdAin7RG2Cul3V9lChoBkdAcJ6dT5wfhmgHS7loCEdAin9ekpI+XHV9lChoBkdAcpAAprk8zWgHS75oCEdAin98DbJwKnV9lChoBkdAbbE4o7V8TmgHS75oCEdAin+CeumrKnV9lChoBkdAb5SH1OCXhWgHS81oCEdAin/DuKGcnXV9lChoBkdAbwwkAPuogmgHTQYBaAhHQIp/8IHC4z91fZQoaAZHQHI3lEuxrzpoB0vbaAhHQIp/+BYmsvJ1fZQoaAZHQG+baHbh3q1oB0vEaAhHQIqACBClabF1fZQoaAZHQHFHP1+RYA9oB0vDaAhHQIqACb+cYqJ1fZQoaAZHQE8lXwsoUi9oB0uKaAhHQIqAP6CUX551fZQoaAZHQHC0JElVtGdoB0vTaAhHQIqAVpXZGrl1fZQoaAZHQG+AEqtozvZoB0u9aAhHQIqIqQNkOI91fZQoaAZHQHAegnc+JP9oB0vIaAhHQIqI1HavicZ1fZQoaAZHQHCzWvfTCtRoB0vaaAhHQIqI2Wv8qF11fZQoaAZHQHMSeA/cFhZoB00dAWgIR0CKiNflZHNHdX2UKGgGR0ByIteQdS2qaAdLv2gIR0CKiSX3QD3edX2UKGgGR0BwGgmdAgPmaAdLwGgIR0CKid1PFefJdX2UKGgGR0BzOn2VVxS6aAdLxGgIR0CKiecsDnvEdX2UKGgGR0Bu2VDtw71aaAdLz2gIR0CKil+G47RwdX2UKGgGR0Bza6e5Fw1jaAdL0mgIR0CKipjSXt0FdX2UKGgGR0Bx1OOjqOcUaAdL/GgIR0CKiqvTPSlWdX2UKGgGR0BwWfLwF1SwaAdNLQFoCEdAiorPW6K+BnV9lChoBkdAco9k56t1ZGgHS9poCEdAiorW+wkgOnV9lChoBkdAcD75CWu5jGgHS8VoCEdAiorkUbkwOHV9lChoBkdAcq1ZmZmZmmgHS/hoCEdAios+wLVnVXV9lChoBkdAc5xsP8Q7LmgHS85oCEdAioudU0elsXV9lChoBkdAcU7qY7aIvmgHS61oCEdAiouwCr92o3V9lChoBkdAcvXowmE5AGgHS8ZoCEdAiouv863iJnV9lChoBkdAcf6WpZOi4GgHS8poCEdAiou8toSL63V9lChoBkdAdAOMfA9FF2gHTQgBaAhHQIqLvSWqtHR1fZQoaAZHQHMYZ1eSjg1oB00kAWgIR0CKi849X9zfdX2UKGgGR0Bw7LV09yLiaAdL1WgIR0CKi+IBzV+adX2UKGgGR0Bv2gTufEn9aAdLvmgIR0CKjILiMo+fdX2UKGgGR0BwMmnwXqJNaAdLwGgIR0CKjOw1zhgmdX2UKGgGR0BwxoKw6hg3aAdLtmgIR0CKjQrQPZqVdX2UKGgGR0Bz+hMN+b3HaAdLz2gIR0CKjVb1yvLYdX2UKGgGR0BzJ+0fHPu5aAdLwmgIR0CKjWtRvWH2dX2UKGgGR0BxnLzOHFglaAdL5mgIR0CKjeLtu1nedX2UKGgGR0BvUGa+evpyaAdLr2gIR0CKjgY1He7+dX2UKGgGR0ByPY3l0YCRaAdL9GgIR0CKjhJz1bqydX2UKGgGR0By4sa5wwTNaAdL1mgIR0CKjhv6TGHYdX2UKGgGR0BwlVMZgogFaAdLyWgIR0CKjkdFOO81dX2UKGgGR0BwQzWsijcmaAdLxmgIR0CKjk1uzhP1dX2UKGgGR0BzIJSl3yI6aAdLyWgIR0CKjozWPLgXdX2UKGgGR0Byo33dsSCfaAdL2GgIR0CKjpWcz67/dX2UKGgGR0BvXsJng5zYaAdL22gIR0CKjrB2wFC+dX2UKGgGR0ByUu9CeEqUaAdL5WgIR0CKjrQE6kqMdX2UKGgGR0BxNE0uUUwjaAdLqmgIR0CKjzyQPqcFdX2UKGgGR0Bwb1Grjo6kaAdL2GgIR0CKj21rIo3KdX2UKGgGR0By1R9lVcUuaAdLvGgIR0CKj5oW56MSdX2UKGgGR0Bw+dmf5DZ2aAdLtWgIR0CKj9wBHTZydX2UKGgGR0Bwecu8K5TZaAdLqmgIR0CKkF+9alk6dX2UKGgGR0By9NxKg7HRaAdLtWgIR0CKkIGGEf1ZdX2UKGgGR0BxzTynUDuCaAdL+WgIR0CKkMwKSgXedX2UKGgGR0BxNsI1LrX2aAdLxGgIR0CKkP1anrIHdX2UKGgGR0BxyqrELpiaaAdLsmgIR0CKkREbYK6XdX2UKGgGR0Byg0VpKzzFaAdLyGgIR0CKkRTx5LRKdX2UKGgGR0BxXXMpw0fpaAdL6GgIR0CKkSEvkBCEdX2UKGgGR0Bt3yDPGACoaAdLwmgIR0CKkUFeOXE7dX2UKGgGR0BwrI7fYSQHaAdL/2gIR0CKkYw3YL9ddX2UKGgGR0Bz2I2gnMMaaAdL0WgIR0CKkZzGPxQSdX2UKGgGR0BzFIVGkN4JaAdL3mgIR0CKkcOiFj/ddX2UKGgGR0BvRRPykKu0aAdLumgIR0CKkd/jsD4hdX2UKGgGR0BzuHfqHGjsaAdLtWgIR0CKkf62OQyRdX2UKGgGR0BxAKDZlFtsaAdLs2gIR0CKkiAf+0gKdX2UKGgGR0Bu29LSNOuaaAdLyWgIR0CKkqWE9MbndX2UKGgGR0ByuQrlNlAeaAdL1mgIR0CKk1MaCL/CdX2UKGgGR0BxkGugYgq3aAdL12gIR0CKk3cM3IdVdX2UKGgGR0ByysqiGnGbaAdLuWgIR0CKk5n8sMAndX2UKGgGR0ByLLLidat+aAdLv2gIR0CKk6E5hjOLdX2UKGgGR0Bxl4WCVbA2aAdLx2gIR0CKk6x9G7SRdX2UKGgGR0BwXy1ndweeaAdLt2gIR0CKk7Sy+pOvdX2UKGgGR0BxDlw0fozOaAdL5WgIR0CKk+t03fhudX2UKGgGR0BwuS3AmAskaAdLvWgIR0CKlCgCfYjCdX2UKGgGR0Bw/MwTM7lraAdL52gIR0CKlDAGB4D+dX2UKGgGR0Byi+WPcSGraAdNBQNoCEdAipR9zGPxQXV9lChoBkdAbv6kHD766GgHS81oCEdAipSK3d9DyHV9lChoBkdAbwB5LRKHwmgHS+RoCEdAipSg3974SHV9lChoBkdAcLc9Htnf22gHS89oCEdAipTJ3xFy73V9lChoBkdAczNiX6ZYxWgHS8VoCEdAipTM10knkXV9lChoBkdAcv2CIk7fYWgHS6NoCEdAipTgbQ1JlXV9lChoBkdAcWYNPgvUSmgHS+ZoCEdAipTxFI/Z/XV9lChoBkdAceLLtNSIg2gHS7FoCEdAipWVstTUAnV9lChoBkdAbwnwWFev6mgHS7poCEdAipXTgMtsenV9lChoBkdASpkQRPGhmGgHS5BoCEdAipX0Vzp5eXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.8.0-31-generic-x86_64-with-glibc2.10 # 31-Ubuntu SMP PREEMPT_DYNAMIC Sat Apr 20 00:40:06 UTC 2024", "Python": "3.8.19", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.24.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b784865045039ccb5e972c97d78eda25cdb47992b95f6bcd538b59550e6cd1e3
3
- size 148094
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4309f2347a5596c45770a469a995ac36c672df364588133bd67a563bc15c9bbb
3
+ size 147459
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7e092846d040>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e092846d0d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e092846d160>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e092846d1f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7e092846d280>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7e092846d310>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e092846d3a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e092846d430>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7e092846d4c0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e092846d550>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e092846d5e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e092846d670>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7e0928468480>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1714477529914229117,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACGMTzP7he83BqPvHDGI72iDg+9s6bYvgAAgD8AAIA/gLGqvVCa5D7zsQ8+yveGvh4neL3uEQE+AAAAAAAAAACzFmC9Hh2FP1ba4bxXiby+c+/gvZmsuj0AAAAAAAAAAABvzT096Bq7Lf8lvkvYi72rkTG7YeiOPAAAgD8AAIA/GmQJvbgsujz64nU9pEb1vZ65cD24DiM9AAAAAAAAAAAAqQg9vFIaPy2m3L1yEHu+U9nEvKU1AbwAAAAAAAAAAOYgUL6MXoU/EeRGvPGyw74b8Tq+FfCDPgAAAAAAAAAAGkpSPR9l+7kbnEszIna4KhAP3Lt1o9SzAACAPwAAgD/zmoO9HqP7PSLF9zz3ZGC+vq4Qu99otj0AAAAAAAAAAKB0Xz6DqUY/wFInPj6Hsr6Mqy8+Os5gvQAAAAAAAAAAM+mSvHHbN7ueMAQ7ZBWNPMIzhLwtMnM9AACAPwAAgD+2Q1q+r/cAP5BFTD4vx62+ih34PCZInD0AAAAAAAAAAACn/TwFOVg+Ok3cPI3Ll76HdaY8pv8DPgAAAAAAAAAAGlaIvfZsALpC9Nw68zbkNU1/ULq+4gC6AAAAAAAAgD+zaL69wz0EupNrQjRsbiOuWSD8utFSqLMAAIA/AACAP8sPjr5gsJk/1npkvgqhlr6TV9m+jOamPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAumAbyYomMAWyUTS4BjAF0lEdAfMsK64Ds+nV9lChoBkdAcNIhmoR7JGgHTU8BaAhHQHzLoVIqbz91fZQoaAZHQGu1mQjlgc9oB01ZAWgIR0B8zWjfvWpZdX2UKGgGR0BszsOkLx7RaAdNOAFoCEdAfM9KfFrEcnV9lChoBkdAbQbUJfICEGgHTSMBaAhHQHzQjbWVeKN1fZQoaAZHQG9UvLPldTpoB03VAmgIR0B80LVhCtzTdX2UKGgGR0BuqEnuy/sWaAdNOAFoCEdAfNHPn0TURXV9lChoBkdAbph0lJHy3GgHTTABaAhHQHzSmcOLBKt1fZQoaAZHQG/uAKneiztoB002AWgIR0B8/Gqp97WvdX2UKGgGR0BvIcxXXAdoaAdNGAFoCEdAfPyt7KJVKnV9lChoBkdAcczcXFcY7GgHTUIBaAhHQHz9SFXaJyh1fZQoaAZHQHCj+oLofSxoB00PAWgIR0B8/0oLG7z1dX2UKGgGR0BxQW2tuDSPaAdNTgFoCEdAfQB32VVxTHV9lChoBkdAcX+Lsa86FWgHTRUCaAhHQH0CcTviLl51fZQoaAZHQHIA1/YrauhoB01yAWgIR0B9BJPwd8zAdX2UKGgGR0ByCa3PRiPRaAdNMwFoCEdAfQWhQFcIJXV9lChoBkdAcXcU5+6RQ2gHTSIBaAhHQH0GKreZXuF1fZQoaAZHQHCsSXlbNbFoB01hAWgIR0B9Bktbs4T9dX2UKGgGR0Bx+0Sh8IAwaAdNvAFoCEdAfQhtMfzSTnV9lChoBkdAcT1HOKO1fGgHTWcBaAhHQH0JxpHqeK91fZQoaAZHQHK2vepGWldoB01VAWgIR0B9CjufEn9fdX2UKGgGR0Busj/GVAzIaAdNTAFoCEdAfQqgydnTRnV9lChoBkdAb4AV1Oj7AWgHTRIBaAhHQH0MgG0NSZV1fZQoaAZHQHCKQjY7JXBoB00QAWgIR0B9DO13MY/FdX2UKGgGR0BrSoemvW6LaAdNWwFoCEdAfRBWe6I3znV9lChoBkdAcOVBuXNTtWgHTS0BaAhHQH0RkxREWqN1fZQoaAZHQG5m9E1EVnFoB00RAWgIR0B9Ed1uBMBZdX2UKGgGR0BzNUM2FWXDaAdNVAFoCEdAfRKXLeQ+2XV9lChoBkdAcgiLeANG3GgHTQMBaAhHQH0S9qL0jC51fZQoaAZHQF5ZUbT+ee5oB03oA2gIR0B9F6p5u63BdX2UKGgGR0BxOPUZvUBoaAdNTAFoCEdAfRvP1tfoinV9lChoBkdAcFMKdhAnlWgHTRcBaAhHQH0dcXrMTvl1fZQoaAZHQG4SWx6fJ3hoB00jAWgIR0B9Hur0aqCIdX2UKGgGR0BsQ8riEQGwaAdNVAFoCEdAfR9IMz/IbXV9lChoBkdAcOkSvkili2gHTWUBaAhHQH0fayjYZl51fZQoaAZHQF+UO0LMLWtoB03oA2gIR0B9IDbpNbkfdX2UKGgGR0Bw/aPyTY/WaAdNDQFoCEdAfSRkT6BRRHV9lChoBkdAcRB0/4ZdfWgHTTgBaAhHQH0lh1oxpL51fZQoaAZHQGzGtfgJkXloB007AWgIR0B9JvjzZpSKdX2UKGgGR0BvImkadc0MaAdN6gFoCEdAfShjawljVnV9lChoBkdAcEDQDmr8zmgHTX0BaAhHQH0ok8vEjxF1fZQoaAZHQG/FSNfgJkZoB010AWgIR0B9KYp8WsRydX2UKGgGR0BsmYJb+tKaaAdNHAFoCEdAfSpCZF5OanV9lChoBkdAbeaOEM9bHWgHTX4CaAhHQH0sVMdtEXt1fZQoaAZHQHDjDjFQ2uRoB00dAWgIR0B9L6QuEmICdX2UKGgGR0BsUOqYJE6UaAdNGQFoCEdAfS+yuZCv5nV9lChoBkdAcQtovzvqkmgHTU4BaAhHQH0v/W1+iJx1fZQoaAZHQHL3Zw0fozNoB00WAWgIR0B9MEophF3IdX2UKGgGR0ByPM50bLlnaAdNLQFoCEdAfTC938n/k3V9lChoBkdAb30G1QZXMmgHTYEBaAhHQH0zloHs1Kp1fZQoaAZHQG9Dta6jFhpoB00mAWgIR0B9XcSOBDohdX2UKGgGR0BwWeKekHlfaAdNQQFoCEdAfV4PszEaVHV9lChoBkdAcTeWCVbA12gHTSwBaAhHQH1fmD6Fds11fZQoaAZHQG7FGZuyeI5oB000AWgIR0B9X99ORDCxdX2UKGgGR0BwkeQ6p5u7aAdNNwFoCEdAfWEX3xnWa3V9lChoBkdAcAyUY8+zMWgHTZgBaAhHQH1h4NI9TxZ1fZQoaAZHQG6xVcdHUc5oB00nAWgIR0B9Ywy9EkSmdX2UKGgGR0BxKDKnvUjLaAdNUwFoCEdAfWNAp8WsR3V9lChoBkdAccdlsP8Q7WgHTRIBaAhHQH1lZemelKt1fZQoaAZHQG8Uk7W/ag5oB00UAWgIR0B9Zc7ihnJ1dX2UKGgGR0Bi7MLH+6y0aAdN6ANoCEdAfWXcoYvWYnV9lChoBkdAWfgr4FiazGgHTegDaAhHQH1mYw/PgNx1fZQoaAZHQG5e40VJtixoB01DAWgIR0B9Z2PDHfdidX2UKGgGR0BsCk8s+V1PaAdNQwFoCEdAfWdwaBI4EXV9lChoBkdAbs8zl90A92gHTRsBaAhHQH1pCA6Mir11fZQoaAZHQGzMZ6+nIhhoB01cAWgIR0B9aWMBIWgwdX2UKGgGR0Bw8CBClabGaAdNCgFoCEdAfWwrTpgTiHV9lChoBkdAbdNZKWcBl2gHTTkBaAhHQH1tOR1X/5t1fZQoaAZHQG/nblaKUFBoB00WAWgIR0B9bkzeoDPodX2UKGgGR0Bx+4OJ+DvmaAdNYAFoCEdAfW8OFQEZBXV9lChoBkdAcC3d8zAN5WgHTTgBaAhHQH1xB5kbxVh1fZQoaAZHQHHlAbIcR15oB01BAWgIR0B9cy3QUpNLdX2UKGgGR0Bv42z2OAAiaAdNSQFoCEdAfXNvtMPBi3V9lChoBkdAb4DxgAp8W2gHTYcBaAhHQH1zf2Xb/Ot1fZQoaAZHQHAOCrDIikhoB00mAWgIR0B9dJlDneSCdX2UKGgGR0BuY9Kujh1laAdNLgFoCEdAfXUP+n62v3V9lChoBkdAcCt2rGR3eWgHTQ4BaAhHQH11HfEXLvF1fZQoaAZHQHEJKTKT0QNoB00oAWgIR0B9dUrmQr+YdX2UKGgGR0BwEX0HyEteaAdNVAFoCEdAfXZU0Nz8xnV9lChoBkdAbzMDMeOn22gHTUEBaAhHQH13WZ7Xxvx1fZQoaAZHQGwncl5WzWxoB00mAWgIR0B9d9axHG0edX2UKGgGR0Bw//UBnzxxaAdNEgFoCEdAfXnkFwDNhXV9lChoBkdAcf51RLsa9GgHTVgBaAhHQH16SX2M85l1fZQoaAZHQHI9gGGEf1ZoB00lAWgIR0B9fJWQwK0EdX2UKGgGR0BxBwfHPu5SaAdNHAFoCEdAfXzZa3ZwoHV9lChoBkdAcBA+S8rZrmgHTUUBaAhHQH19MRUWEbp1fZQoaAZHQG+ruL74zrNoB00+AWgIR0B9gHocJdB0dX2UKGgGR0BxTI8RtgrpaAdNKAFoCEdAfYGci4axYHV9lChoBkdAcO6XQtz0YmgHTSYBaAhHQH2DX2qT8pF1fZQoaAZHQG+OFM7EHdJoB00oAWgIR0B9g4v6CUX6dX2UKGgGR0Bxv2C4BmwraAdNNQFoCEdAfYO1stTUAnV9lChoBkdAcZAWxhUip2gHTS8BaAhHQH2EKhYeT3Z1fZQoaAZHQHF1Xv2GqPxoB00zAWgIR0B9haOLiuMddX2UKGgGR0BwDdOXVsk6aAdNnQFoCEdAfYhNd7fHgnV9lChoBkdAcmH4c3l0YGgHTREBaAhHQH2IlDv3JxN1fZQoaAZHQG+km51/2CdoB01zAWgIR0B9iq9vjwQUdX2UKGgGR0BwQeKwY+B6aAdN6wFoCEdAfYySBK+SKXV9lChoBkdAbSL0hePaMGgHTScBaAhHQH2NQCKaXrt1fZQoaAZHQHBGQccU/OdoB00oAWgIR0B9jZGlQ/HHdX2UKGgGR0Bwg9mwqy4XaAdNaQFoCEdAfY4WS2Yv4HVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x76a4d1ce0310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x76a4d1ce03a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x76a4d1ce0430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x76a4d1ce04c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x76a4d1ce0550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x76a4d1ce05e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x76a4d1ce0670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x76a4d1ce0700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x76a4d1ce0790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x76a4d1ce0820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x76a4d1ce08b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x76a4d1ce0940>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x76a4d1ce1120>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 3014656,
25
+ "_total_timesteps": 3000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1714485012985972468,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2JoTxPQRW889YEPnNsjTxgQ4C9AGVrPQAAgD8AAIA/pnhpvmRDfz6uvZ8+Ka6SvlWEiL27UDc9AAAAAAAAAAAzLrA94Uy5ujqwBTzPpI08iypcO+Yvdr0AAIA/AACAP3N80T21l54/KqEcP39GIr+BMpg9/xSxPgAAAAAAAAAAZhASvEgTmLrLLCU4PH0UMz0rmbom+D63AACAPwAAgD/Nila94V6Vui04/jyV8Bu1Op40uwpuGbQAAIA/AACAP8B6sj2H67k+bDcOvvxZ8b4ExYg87lUpvgAAAAAAAAAALf0NPoKVuD6eeWa+0un3vssedTzMsrS9AAAAAAAAAACzEBy9Kah6upLzcLlm8Ga0gk9AO9T3jDgAAIA/AACAPyZ2Ij4niwU/6YI/vt6VAL+Dx9A9HssZvgAAAAAAAAAAMydqPEiWoT7iQnK+1LrUvlfyjb3Ktbm9AAAAAAAAAADmvAO9hvq1Pzm3H787kS49njB4PL6d9bwAAAAAAAAAAJPVRD6lGyE+fqCnvoQIxr40mHK82gO8vQAAAAAAAAAADf8nvqIrrT/CbQO/0SsAv6iOZL7G9Rm9AAAAAAAAAAAavSm915F6u45cEr12bbC9H9QLPf4kMz8AAIA/AACAP5p8zr0LFMo9fgaYPof3Tr7LDbS7IHCKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJn3C0ngHiMAWyUTSkBjAF0lEdAinxpo0ygw3V9lChoBkdAR+/4oJAt4GgHS7doCEdAinz5j6N2knV9lChoBkdAb2reKKpDNWgHS9NoCEdAin0Cy6cy33V9lChoBkdAcQFjRD1GsmgHS+FoCEdAin0JSiudPXV9lChoBkdAcPBycCo0h2gHS8hoCEdAin0PnbItDnV9lChoBkdAcw3PmPo3aWgHS8JoCEdAin0RqGlANXV9lChoBkdAcORqQA+6iGgHS+poCEdAin1KmKqGUXV9lChoBkdAcxUPznRsuWgHS9FoCEdAin1mFSKm9HV9lChoBkdAc2g6/IsAemgHS8hoCEdAin1rnDBMz3V9lChoBkdAcwE0hePaMGgHS9toCEdAin2E43m3fHV9lChoBkdAcrYTuv2XcGgHS9toCEdAin4lGPPszHV9lChoBkdAb/PwhGH58GgHS+VoCEdAin5g/keZHHV9lChoBkdAcZ5G3F1jiGgHS+loCEdAin5lNlAeJnV9lChoBkdAcTASzgMtsmgHS+BoCEdAin5ltTDO1XV9lChoBkdAcfHdf9gndGgHS99oCEdAin7R/ustCnV9lChoBkdAcu/1zySV4WgHS8toCEdAin7RG2Cul3V9lChoBkdAcJ6dT5wfhmgHS7loCEdAin9ekpI+XHV9lChoBkdAcpAAprk8zWgHS75oCEdAin98DbJwKnV9lChoBkdAbbE4o7V8TmgHS75oCEdAin+CeumrKnV9lChoBkdAb5SH1OCXhWgHS81oCEdAin/DuKGcnXV9lChoBkdAbwwkAPuogmgHTQYBaAhHQIp/8IHC4z91fZQoaAZHQHI3lEuxrzpoB0vbaAhHQIp/+BYmsvJ1fZQoaAZHQG+baHbh3q1oB0vEaAhHQIqACBClabF1fZQoaAZHQHFHP1+RYA9oB0vDaAhHQIqACb+cYqJ1fZQoaAZHQE8lXwsoUi9oB0uKaAhHQIqAP6CUX551fZQoaAZHQHC0JElVtGdoB0vTaAhHQIqAVpXZGrl1fZQoaAZHQG+AEqtozvZoB0u9aAhHQIqIqQNkOI91fZQoaAZHQHAegnc+JP9oB0vIaAhHQIqI1HavicZ1fZQoaAZHQHCzWvfTCtRoB0vaaAhHQIqI2Wv8qF11fZQoaAZHQHMSeA/cFhZoB00dAWgIR0CKiNflZHNHdX2UKGgGR0ByIteQdS2qaAdLv2gIR0CKiSX3QD3edX2UKGgGR0BwGgmdAgPmaAdLwGgIR0CKid1PFefJdX2UKGgGR0BzOn2VVxS6aAdLxGgIR0CKiecsDnvEdX2UKGgGR0Bu2VDtw71aaAdLz2gIR0CKil+G47RwdX2UKGgGR0Bza6e5Fw1jaAdL0mgIR0CKipjSXt0FdX2UKGgGR0Bx1OOjqOcUaAdL/GgIR0CKiqvTPSlWdX2UKGgGR0BwWfLwF1SwaAdNLQFoCEdAiorPW6K+BnV9lChoBkdAco9k56t1ZGgHS9poCEdAiorW+wkgOnV9lChoBkdAcD75CWu5jGgHS8VoCEdAiorkUbkwOHV9lChoBkdAcq1ZmZmZmmgHS/hoCEdAios+wLVnVXV9lChoBkdAc5xsP8Q7LmgHS85oCEdAioudU0elsXV9lChoBkdAcU7qY7aIvmgHS61oCEdAiouwCr92o3V9lChoBkdAcvXowmE5AGgHS8ZoCEdAiouv863iJnV9lChoBkdAcf6WpZOi4GgHS8poCEdAiou8toSL63V9lChoBkdAdAOMfA9FF2gHTQgBaAhHQIqLvSWqtHR1fZQoaAZHQHMYZ1eSjg1oB00kAWgIR0CKi849X9zfdX2UKGgGR0Bw7LV09yLiaAdL1WgIR0CKi+IBzV+adX2UKGgGR0Bv2gTufEn9aAdLvmgIR0CKjILiMo+fdX2UKGgGR0BwMmnwXqJNaAdLwGgIR0CKjOw1zhgmdX2UKGgGR0BwxoKw6hg3aAdLtmgIR0CKjQrQPZqVdX2UKGgGR0Bz+hMN+b3HaAdLz2gIR0CKjVb1yvLYdX2UKGgGR0BzJ+0fHPu5aAdLwmgIR0CKjWtRvWH2dX2UKGgGR0BxnLzOHFglaAdL5mgIR0CKjeLtu1nedX2UKGgGR0BvUGa+evpyaAdLr2gIR0CKjgY1He7+dX2UKGgGR0ByPY3l0YCRaAdL9GgIR0CKjhJz1bqydX2UKGgGR0By4sa5wwTNaAdL1mgIR0CKjhv6TGHYdX2UKGgGR0BwlVMZgogFaAdLyWgIR0CKjkdFOO81dX2UKGgGR0BwQzWsijcmaAdLxmgIR0CKjk1uzhP1dX2UKGgGR0BzIJSl3yI6aAdLyWgIR0CKjozWPLgXdX2UKGgGR0Byo33dsSCfaAdL2GgIR0CKjpWcz67/dX2UKGgGR0BvXsJng5zYaAdL22gIR0CKjrB2wFC+dX2UKGgGR0ByUu9CeEqUaAdL5WgIR0CKjrQE6kqMdX2UKGgGR0BxNE0uUUwjaAdLqmgIR0CKjzyQPqcFdX2UKGgGR0Bwb1Grjo6kaAdL2GgIR0CKj21rIo3KdX2UKGgGR0By1R9lVcUuaAdLvGgIR0CKj5oW56MSdX2UKGgGR0Bw+dmf5DZ2aAdLtWgIR0CKj9wBHTZydX2UKGgGR0Bwecu8K5TZaAdLqmgIR0CKkF+9alk6dX2UKGgGR0By9NxKg7HRaAdLtWgIR0CKkIGGEf1ZdX2UKGgGR0BxzTynUDuCaAdL+WgIR0CKkMwKSgXedX2UKGgGR0BxNsI1LrX2aAdLxGgIR0CKkP1anrIHdX2UKGgGR0BxyqrELpiaaAdLsmgIR0CKkREbYK6XdX2UKGgGR0Byg0VpKzzFaAdLyGgIR0CKkRTx5LRKdX2UKGgGR0BxXXMpw0fpaAdL6GgIR0CKkSEvkBCEdX2UKGgGR0Bt3yDPGACoaAdLwmgIR0CKkUFeOXE7dX2UKGgGR0BwrI7fYSQHaAdL/2gIR0CKkYw3YL9ddX2UKGgGR0Bz2I2gnMMaaAdL0WgIR0CKkZzGPxQSdX2UKGgGR0BzFIVGkN4JaAdL3mgIR0CKkcOiFj/ddX2UKGgGR0BvRRPykKu0aAdLumgIR0CKkd/jsD4hdX2UKGgGR0BzuHfqHGjsaAdLtWgIR0CKkf62OQyRdX2UKGgGR0BxAKDZlFtsaAdLs2gIR0CKkiAf+0gKdX2UKGgGR0Bu29LSNOuaaAdLyWgIR0CKkqWE9MbndX2UKGgGR0ByuQrlNlAeaAdL1mgIR0CKk1MaCL/CdX2UKGgGR0BxkGugYgq3aAdL12gIR0CKk3cM3IdVdX2UKGgGR0ByysqiGnGbaAdLuWgIR0CKk5n8sMAndX2UKGgGR0ByLLLidat+aAdLv2gIR0CKk6E5hjOLdX2UKGgGR0Bxl4WCVbA2aAdLx2gIR0CKk6x9G7SRdX2UKGgGR0BwXy1ndweeaAdLt2gIR0CKk7Sy+pOvdX2UKGgGR0BxDlw0fozOaAdL5WgIR0CKk+t03fhudX2UKGgGR0BwuS3AmAskaAdLvWgIR0CKlCgCfYjCdX2UKGgGR0Bw/MwTM7lraAdL52gIR0CKlDAGB4D+dX2UKGgGR0Byi+WPcSGraAdNBQNoCEdAipR9zGPxQXV9lChoBkdAbv6kHD766GgHS81oCEdAipSK3d9DyHV9lChoBkdAbwB5LRKHwmgHS+RoCEdAipSg3974SHV9lChoBkdAcLc9Htnf22gHS89oCEdAipTJ3xFy73V9lChoBkdAczNiX6ZYxWgHS8VoCEdAipTM10knkXV9lChoBkdAcv2CIk7fYWgHS6NoCEdAipTgbQ1JlXV9lChoBkdAcWYNPgvUSmgHS+ZoCEdAipTxFI/Z/XV9lChoBkdAceLLtNSIg2gHS7FoCEdAipWVstTUAnV9lChoBkdAbwnwWFev6mgHS7poCEdAipXTgMtsenV9lChoBkdASpkQRPGhmGgHS5BoCEdAipX0Vzp5eXVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 736,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c5e3ea0cf5672aff806b11d14f731e3085ff02b95f1139ccbec0a744cd99e67
3
- size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3223a5a1e8cc4b0b40dd0be1ff90d31879ac7ea0d100ef162e8e98865f69fbd5
3
+ size 87978
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b6b91b379d975b22d69c0ad38d74ef8cc9ce68ea07a93f148fcbdd70d1661156
3
- size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7284e008b4391271b99df1e6b0070eea9d02fd4f1153225b9b8c217efa8ec48a
3
+ size 43634
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -2,7 +2,7 @@
2
  - Python: 3.8.19
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.3.0+cu121
5
- - GPU Enabled: True
6
  - Numpy: 1.24.4
7
  - Cloudpickle: 3.0.0
8
  - Gymnasium: 0.28.1
 
2
  - Python: 3.8.19
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: False
6
  - Numpy: 1.24.4
7
  - Cloudpickle: 3.0.0
8
  - Gymnasium: 0.28.1
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 250.1803351, "std_reward": 49.21955174603466, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-30T20:13:29.863946"}
 
1
+ {"mean_reward": 284.0855858, "std_reward": 16.732494390240525, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-30T22:05:13.631089"}