David0702 commited on
Commit
e1c1b03
·
verified ·
1 Parent(s): b66b630

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 284.09 +/- 16.73
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 288.47 +/- 15.41
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x76a4d1ce0310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x76a4d1ce03a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x76a4d1ce0430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x76a4d1ce04c0>", "_build": "<function ActorCriticPolicy._build at 0x76a4d1ce0550>", "forward": "<function ActorCriticPolicy.forward at 0x76a4d1ce05e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x76a4d1ce0670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x76a4d1ce0700>", "_predict": "<function ActorCriticPolicy._predict at 0x76a4d1ce0790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x76a4d1ce0820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x76a4d1ce08b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x76a4d1ce0940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x76a4d1ce1120>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714485012985972468, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2JoTxPQRW889YEPnNsjTxgQ4C9AGVrPQAAgD8AAIA/pnhpvmRDfz6uvZ8+Ka6SvlWEiL27UDc9AAAAAAAAAAAzLrA94Uy5ujqwBTzPpI08iypcO+Yvdr0AAIA/AACAP3N80T21l54/KqEcP39GIr+BMpg9/xSxPgAAAAAAAAAAZhASvEgTmLrLLCU4PH0UMz0rmbom+D63AACAPwAAgD/Nila94V6Vui04/jyV8Bu1Op40uwpuGbQAAIA/AACAP8B6sj2H67k+bDcOvvxZ8b4ExYg87lUpvgAAAAAAAAAALf0NPoKVuD6eeWa+0un3vssedTzMsrS9AAAAAAAAAACzEBy9Kah6upLzcLlm8Ga0gk9AO9T3jDgAAIA/AACAPyZ2Ij4niwU/6YI/vt6VAL+Dx9A9HssZvgAAAAAAAAAAMydqPEiWoT7iQnK+1LrUvlfyjb3Ktbm9AAAAAAAAAADmvAO9hvq1Pzm3H787kS49njB4PL6d9bwAAAAAAAAAAJPVRD6lGyE+fqCnvoQIxr40mHK82gO8vQAAAAAAAAAADf8nvqIrrT/CbQO/0SsAv6iOZL7G9Rm9AAAAAAAAAAAavSm915F6u45cEr12bbC9H9QLPf4kMz8AAIA/AACAP5p8zr0LFMo9fgaYPof3Tr7LDbS7IHCKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJn3C0ngHiMAWyUTSkBjAF0lEdAinxpo0ygw3V9lChoBkdAR+/4oJAt4GgHS7doCEdAinz5j6N2knV9lChoBkdAb2reKKpDNWgHS9NoCEdAin0Cy6cy33V9lChoBkdAcQFjRD1GsmgHS+FoCEdAin0JSiudPXV9lChoBkdAcPBycCo0h2gHS8hoCEdAin0PnbItDnV9lChoBkdAcw3PmPo3aWgHS8JoCEdAin0RqGlANXV9lChoBkdAcORqQA+6iGgHS+poCEdAin1KmKqGUXV9lChoBkdAcxUPznRsuWgHS9FoCEdAin1mFSKm9HV9lChoBkdAc2g6/IsAemgHS8hoCEdAin1rnDBMz3V9lChoBkdAcwE0hePaMGgHS9toCEdAin2E43m3fHV9lChoBkdAcrYTuv2XcGgHS9toCEdAin4lGPPszHV9lChoBkdAb/PwhGH58GgHS+VoCEdAin5g/keZHHV9lChoBkdAcZ5G3F1jiGgHS+loCEdAin5lNlAeJnV9lChoBkdAcTASzgMtsmgHS+BoCEdAin5ltTDO1XV9lChoBkdAcfHdf9gndGgHS99oCEdAin7R/ustCnV9lChoBkdAcu/1zySV4WgHS8toCEdAin7RG2Cul3V9lChoBkdAcJ6dT5wfhmgHS7loCEdAin9ekpI+XHV9lChoBkdAcpAAprk8zWgHS75oCEdAin98DbJwKnV9lChoBkdAbbE4o7V8TmgHS75oCEdAin+CeumrKnV9lChoBkdAb5SH1OCXhWgHS81oCEdAin/DuKGcnXV9lChoBkdAbwwkAPuogmgHTQYBaAhHQIp/8IHC4z91fZQoaAZHQHI3lEuxrzpoB0vbaAhHQIp/+BYmsvJ1fZQoaAZHQG+baHbh3q1oB0vEaAhHQIqACBClabF1fZQoaAZHQHFHP1+RYA9oB0vDaAhHQIqACb+cYqJ1fZQoaAZHQE8lXwsoUi9oB0uKaAhHQIqAP6CUX551fZQoaAZHQHC0JElVtGdoB0vTaAhHQIqAVpXZGrl1fZQoaAZHQG+AEqtozvZoB0u9aAhHQIqIqQNkOI91fZQoaAZHQHAegnc+JP9oB0vIaAhHQIqI1HavicZ1fZQoaAZHQHCzWvfTCtRoB0vaaAhHQIqI2Wv8qF11fZQoaAZHQHMSeA/cFhZoB00dAWgIR0CKiNflZHNHdX2UKGgGR0ByIteQdS2qaAdLv2gIR0CKiSX3QD3edX2UKGgGR0BwGgmdAgPmaAdLwGgIR0CKid1PFefJdX2UKGgGR0BzOn2VVxS6aAdLxGgIR0CKiecsDnvEdX2UKGgGR0Bu2VDtw71aaAdLz2gIR0CKil+G47RwdX2UKGgGR0Bza6e5Fw1jaAdL0mgIR0CKipjSXt0FdX2UKGgGR0Bx1OOjqOcUaAdL/GgIR0CKiqvTPSlWdX2UKGgGR0BwWfLwF1SwaAdNLQFoCEdAiorPW6K+BnV9lChoBkdAco9k56t1ZGgHS9poCEdAiorW+wkgOnV9lChoBkdAcD75CWu5jGgHS8VoCEdAiorkUbkwOHV9lChoBkdAcq1ZmZmZmmgHS/hoCEdAios+wLVnVXV9lChoBkdAc5xsP8Q7LmgHS85oCEdAioudU0elsXV9lChoBkdAcU7qY7aIvmgHS61oCEdAiouwCr92o3V9lChoBkdAcvXowmE5AGgHS8ZoCEdAiouv863iJnV9lChoBkdAcf6WpZOi4GgHS8poCEdAiou8toSL63V9lChoBkdAdAOMfA9FF2gHTQgBaAhHQIqLvSWqtHR1fZQoaAZHQHMYZ1eSjg1oB00kAWgIR0CKi849X9zfdX2UKGgGR0Bw7LV09yLiaAdL1WgIR0CKi+IBzV+adX2UKGgGR0Bv2gTufEn9aAdLvmgIR0CKjILiMo+fdX2UKGgGR0BwMmnwXqJNaAdLwGgIR0CKjOw1zhgmdX2UKGgGR0BwxoKw6hg3aAdLtmgIR0CKjQrQPZqVdX2UKGgGR0Bz+hMN+b3HaAdLz2gIR0CKjVb1yvLYdX2UKGgGR0BzJ+0fHPu5aAdLwmgIR0CKjWtRvWH2dX2UKGgGR0BxnLzOHFglaAdL5mgIR0CKjeLtu1nedX2UKGgGR0BvUGa+evpyaAdLr2gIR0CKjgY1He7+dX2UKGgGR0ByPY3l0YCRaAdL9GgIR0CKjhJz1bqydX2UKGgGR0By4sa5wwTNaAdL1mgIR0CKjhv6TGHYdX2UKGgGR0BwlVMZgogFaAdLyWgIR0CKjkdFOO81dX2UKGgGR0BwQzWsijcmaAdLxmgIR0CKjk1uzhP1dX2UKGgGR0BzIJSl3yI6aAdLyWgIR0CKjozWPLgXdX2UKGgGR0Byo33dsSCfaAdL2GgIR0CKjpWcz67/dX2UKGgGR0BvXsJng5zYaAdL22gIR0CKjrB2wFC+dX2UKGgGR0ByUu9CeEqUaAdL5WgIR0CKjrQE6kqMdX2UKGgGR0BxNE0uUUwjaAdLqmgIR0CKjzyQPqcFdX2UKGgGR0Bwb1Grjo6kaAdL2GgIR0CKj21rIo3KdX2UKGgGR0By1R9lVcUuaAdLvGgIR0CKj5oW56MSdX2UKGgGR0Bw+dmf5DZ2aAdLtWgIR0CKj9wBHTZydX2UKGgGR0Bwecu8K5TZaAdLqmgIR0CKkF+9alk6dX2UKGgGR0By9NxKg7HRaAdLtWgIR0CKkIGGEf1ZdX2UKGgGR0BxzTynUDuCaAdL+WgIR0CKkMwKSgXedX2UKGgGR0BxNsI1LrX2aAdLxGgIR0CKkP1anrIHdX2UKGgGR0BxyqrELpiaaAdLsmgIR0CKkREbYK6XdX2UKGgGR0Byg0VpKzzFaAdLyGgIR0CKkRTx5LRKdX2UKGgGR0BxXXMpw0fpaAdL6GgIR0CKkSEvkBCEdX2UKGgGR0Bt3yDPGACoaAdLwmgIR0CKkUFeOXE7dX2UKGgGR0BwrI7fYSQHaAdL/2gIR0CKkYw3YL9ddX2UKGgGR0Bz2I2gnMMaaAdL0WgIR0CKkZzGPxQSdX2UKGgGR0BzFIVGkN4JaAdL3mgIR0CKkcOiFj/ddX2UKGgGR0BvRRPykKu0aAdLumgIR0CKkd/jsD4hdX2UKGgGR0BzuHfqHGjsaAdLtWgIR0CKkf62OQyRdX2UKGgGR0BxAKDZlFtsaAdLs2gIR0CKkiAf+0gKdX2UKGgGR0Bu29LSNOuaaAdLyWgIR0CKkqWE9MbndX2UKGgGR0ByuQrlNlAeaAdL1mgIR0CKk1MaCL/CdX2UKGgGR0BxkGugYgq3aAdL12gIR0CKk3cM3IdVdX2UKGgGR0ByysqiGnGbaAdLuWgIR0CKk5n8sMAndX2UKGgGR0ByLLLidat+aAdLv2gIR0CKk6E5hjOLdX2UKGgGR0Bxl4WCVbA2aAdLx2gIR0CKk6x9G7SRdX2UKGgGR0BwXy1ndweeaAdLt2gIR0CKk7Sy+pOvdX2UKGgGR0BxDlw0fozOaAdL5WgIR0CKk+t03fhudX2UKGgGR0BwuS3AmAskaAdLvWgIR0CKlCgCfYjCdX2UKGgGR0Bw/MwTM7lraAdL52gIR0CKlDAGB4D+dX2UKGgGR0Byi+WPcSGraAdNBQNoCEdAipR9zGPxQXV9lChoBkdAbv6kHD766GgHS81oCEdAipSK3d9DyHV9lChoBkdAbwB5LRKHwmgHS+RoCEdAipSg3974SHV9lChoBkdAcLc9Htnf22gHS89oCEdAipTJ3xFy73V9lChoBkdAczNiX6ZYxWgHS8VoCEdAipTM10knkXV9lChoBkdAcv2CIk7fYWgHS6NoCEdAipTgbQ1JlXV9lChoBkdAcWYNPgvUSmgHS+ZoCEdAipTxFI/Z/XV9lChoBkdAceLLtNSIg2gHS7FoCEdAipWVstTUAnV9lChoBkdAbwnwWFev6mgHS7poCEdAipXTgMtsenV9lChoBkdASpkQRPGhmGgHS5BoCEdAipX0Vzp5eXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.8.0-31-generic-x86_64-with-glibc2.10 # 31-Ubuntu SMP PREEMPT_DYNAMIC Sat Apr 20 00:40:06 UTC 2024", "Python": "3.8.19", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.24.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c197c662430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c197c6624c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c197c662550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c197c6625e0>", "_build": "<function ActorCriticPolicy._build at 0x7c197c662670>", "forward": "<function ActorCriticPolicy.forward at 0x7c197c662700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c197c662790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c197c662820>", "_predict": "<function ActorCriticPolicy._predict at 0x7c197c6628b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c197c662940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c197c6629d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c197c662a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7c197c65e540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVTwAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEVGFuaJSTlHUu", "net_arch": [64, 64], "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>"}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714490292075909597, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALObTr16lh4/nFaAPWN8Rr+8DsS9xJuiPQAAAAAAAAAArVoBvkiN9roVwEM7qs1kOBMIYzx6BG+6AACAPwAAgD8AYRI+Skn6PgO2T73tKCO/shebPn1mnD0AAAAAAAAAACZ7pD2/qBo+WpTvvhbhjb2cLYS+7XQjvgAAAAAAAAAAZoZqOsMtd7rQ2Hq5s/SPtK/yLrs9FJI4AACAPwAAgD8ziuO9EgiAP3kQL77Rszq/YK18vqNw6b0AAAAAAAAAADqFDz6NL1U+DVKzvisPsb5E9k89HR1svgAAAAAAAAAAZmYyO2JYkz89bea7vGNiv7AGKb3YKKK8AAAAAAAAAAAz+iY9SMOHuoiFBL4AX/Q45AObusOlXbgAAIA/AACAP8BwsT3zJsI/8CrmPv7lCj2I1Qs+6xp9PgAAAAAAAAAAzRw+PMSd7j5zdua89Og6v5lFJL1yHam8AAAAAAAAAABaC449JiZ2P9r0HT4roVi/F6TfPYawDj4AAAAAAAAAADOn0bx7aoG63QPRu969OTWBWFo7WA6rtAAAgD8AAIA/jezVvQ6d4T2gx6Y+j24Bvw+HNT61m2U+AAAAAAAAAAAAdSM+lPhqP/IRTz5aSje/dKaJPsto2TsAAAAAAAAAAD15kD6XFFM/okOBPWRZOb+mf7c+GFtvvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFyf0NBnjCMAWyUS8KMAXSUR0CQJYJC0F8pdX2UKGgGR0ByjcFEAo5QaAdLqGgIR0CQJZTOgQHzdX2UKGgGR0BwznphWo3raAdLpGgIR0CQJcQDFId3dX2UKGgGR0BxiVbTtsvaaAdLq2gIR0CQJccdYGMXdX2UKGgGR0Bw09IOH310aAdLqGgIR0CQJcxj8UEgdX2UKGgGR0ByHcOuq3mWaAdLxmgIR0CQJdldkauPdX2UKGgGR0Bw92bKA8SxaAdLtmgIR0CQJe127nPndX2UKGgGR0ByeSj0th/iaAdLrWgIR0CQJf27Wd3CdX2UKGgGR0BMkm7SRbKSaAdLdGgIR0CQJgixVyWBdX2UKGgGR0ByXx6qsEJTaAdLumgIR0CQJlbNr0rcdX2UKGgGR0Bx9GhufmLcaAdLv2gIR0CQJmP3BYV7dX2UKGgGR0Bwokh4dIXkaAdLqGgIR0CQJnuHvc8DdX2UKGgGR0BzoqmsNlRQaAdLxmgIR0CQJn4tYjjadX2UKGgGR0BvrHwuuievaAdLsWgIR0CQJo8SwnpjdX2UKGgGR0ByJ9BppN9IaAdLuGgIR0CQJqZRKpT/dX2UKGgGR0Bx9Jp35eqraAdLwmgIR0CQJr6Hj6vadX2UKGgGR0BxUIFhXr+paAdLvWgIR0CQJswvg3tKdX2UKGgGR0ByFVFCswL3aAdLumgIR0CQMMuZTho/dX2UKGgGR0BzqSFmFrVOaAdLvWgIR0CQMNdQwblzdX2UKGgGR0BwyoJokAxSaAdLn2gIR0CQMOW4mTkidX2UKGgGR0ByrMe1a4c4aAdLymgIR0CQMOVjqfOEdX2UKGgGR0BzIuPikwevaAdLuGgIR0CQMPN9ph4MdX2UKGgGR0BywoOCoS+QaAdL02gIR0CQMQrCm/FjdX2UKGgGR0BySv/T9bX6aAdL1WgIR0CQMTafjCHidX2UKGgGR0BwjaqCHymRaAdLp2gIR0CQMZMTewcHdX2UKGgGR0Byur0QK8cuaAdL2WgIR0CQMZx6v7m/dX2UKGgGR0BzRODpTuOTaAdL1GgIR0CQMaFOfukUdX2UKGgGR0ByE/Z00WM1aAdLy2gIR0CQMam5UcXFdX2UKGgGR0By/YyeqaPTaAdL0GgIR0CQMcZamoBJdX2UKGgGR0B0rFIZqEeyaAdL42gIR0CQMdXnQpnZdX2UKGgGR0BzL0i6g/TtaAdLtWgIR0CQMdVYISlFdX2UKGgGR0BxTh5D7ZWaaAdLwWgIR0CQMdtnwob5dX2UKGgGR0BxLhELH+6zaAdLrWgIR0CQMfhpxm03dX2UKGgGR0ByQRz5oGpuaAdLqWgIR0CQMfvVVghKdX2UKGgGR0ByBNvm5lOHaAdLlGgIR0CQMgl/H5rQdX2UKGgGR0ByjYQyyleoaAdLwGgIR0CQMipX6qKhdX2UKGgGR0BynjyVfNRnaAdL02gIR0CQMkqNp/PPdX2UKGgGR0BwSjvG6wt8aAdLqWgIR0CQMlMHKOktdX2UKGgGR0ByhVt/FzdUaAdL0WgIR0CQMlSBbwBpdX2UKGgGR0BjFKgVXV9XaAdN6ANoCEdAkDJ6bayrxXV9lChoBkdAcmVUkv9LpWgHS8loCEdAkDLVoQFs6HV9lChoBkdAcm2IInjQzGgHS8poCEdAkDLe9Jz1b3V9lChoBkdAcgj4YJmdy2gHS8ZoCEdAkDLj0UXYUXV9lChoBkdAb3SJ9iMHbGgHS7BoCEdAkDLpmyxA0XV9lChoBkdAdIgRceKba2gHS9hoCEdAkDL5aV2RrHV9lChoBkdAclBcv/R3NmgHS8ZoCEdAkDL9n5BToHV9lChoBkdAbr2HObAk9mgHS8JoCEdAkDMEPQOWjXV9lChoBkdAcnFe4TbnHWgHS75oCEdAkDMERaouPHV9lChoBkdAcSuv5gw482gHS6VoCEdAkDMsTFl05nV9lChoBkdAcDCOxSpBHGgHS5loCEdAkDNCLAHminV9lChoBkdAcCp5xiobXGgHS9xoCEdAkDNRMN+b3HV9lChoBkdAcxdnTy8SPGgHS9JoCEdAkDNUA93bEnV9lChoBkdAc/tM5wOvuGgHS/JoCEdAkDN6Vt4zJ3V9lChoBkdAVDIbCJoCdWgHS3FoCEdAkDOMCkoF3nV9lChoBkdAc6AKWLP2PGgHS9BoCEdAkDOWZqmCRXV9lChoBkdAc3LAkcCHRGgHS9poCEdAkDPZc9nscHV9lChoBkdAcua7bcoH9mgHS/toCEdAkDPophF3IXV9lChoBkdAcUUFcpsoD2gHS59oCEdAkDQDsD4gzXV9lChoBkdAcHzvt+kP+WgHS7NoCEdAkDQFgYxcmnV9lChoBkdAcrn36AOJ+GgHS7hoCEdAkDQXZ5AyEnV9lChoBkdAcVaiuMdcS2gHS4toCEdAkDQq1LJ0XHV9lChoBkdAc3I+lCTlk2gHS7poCEdAkDQ1mFrVOXV9lChoBkdAcaCTsY2sJmgHS8doCEdAkDRK0tyxRnV9lChoBkdAchwNorWiDmgHS8JoCEdAkDRxCdBjWnV9lChoBkdAcgwqmCROlGgHS69oCEdAkDR1yWAwwnV9lChoBkdAcLbYf4h2XGgHS7hoCEdAkDSIGIKtxXV9lChoBkdAcuyrvsqrimgHTQABaAhHQJA0icVgx8F1fZQoaAZHQHJ0DV2A5JdoB0uraAhHQJA0s8mrsB11fZQoaAZHQHSAQTmGM4toB0vMaAhHQJA00TqSowV1fZQoaAZHQHLPfOIInjRoB0vGaAhHQJA02ZF5Oah1fZQoaAZHQHBRKB3A2ydoB0ukaAhHQJA07T5O8Ch1fZQoaAZHQHBUwf6oESxoB0u0aAhHQJA1F8qnWJ91fZQoaAZHQHPXBX0XgtRoB0u5aAhHQJA1QkyDZlF1fZQoaAZHQHLLQDq4YrJoB0unaAhHQJA1WrPt2LZ1fZQoaAZHQHMVOZkTYd1oB0vSaAhHQJA1h9Tgl4V1fZQoaAZHQHM+w3o9s8BoB0vqaAhHQJA1nwy6+WZ1fZQoaAZHQG/rfvOQhfVoB0umaAhHQJA1oam4y451fZQoaAZHQHL6HmFJxvNoB0vXaAhHQJA1qlnAZbZ1fZQoaAZHQHGG606YE4hoB0u2aAhHQJA10RmK64F1fZQoaAZHQHKzfPszEaVoB0voaAhHQJA17Pt2LYR1fZQoaAZHQHMAt8Aq/dtoB0vFaAhHQJA171+RYA91fZQoaAZHQHARRaHKwINoB0uoaAhHQJA2Dlp48lp1fZQoaAZHQHKLdfPX05FoB0u9aAhHQJA2DllsguB1fZQoaAZHQHPwraAWi11oB0vGaAhHQJA2Omm+Cbt1fZQoaAZHQHI/vwd8zANoB0v+aAhHQJA2OpYLb6B1fZQoaAZHQHA7SkXUH6doB0uuaAhHQJA2VoXbdrR1fZQoaAZHQHF9Sgbp/w1oB0vPaAhHQJA2ZRDTjNp1fZQoaAZHQG9TEzXSSeRoB0u4aAhHQJA2jVlPJq91fZQoaAZHQHIICM98qnZoB0uZaAhHQJA2lp9JBgN1fZQoaAZHQHMASI1tO21oB0vGaAhHQJA2vSThYNl1fZQoaAZHQHJOmbkOqedoB0vAaAhHQJA28kVvddp1fZQoaAZHQHPvFHrhR65oB0vGaAhHQJA3AACGN711fZQoaAZHQHIK7cbiqABoB0uhaAhHQJA3B/ustCl1fZQoaAZHQHFjk6kqMFVoB0vQaAhHQJA3G53C9AZ1fZQoaAZHQHIaTDXOGCZoB0uiaAhHQJA3LES/TLJ1fZQoaAZHQHFPVbmlqJxoB0vDaAhHQJA3LCGetjl1fZQoaAZHQHIgLHp8neBoB0uoaAhHQJA3NoZhrnF1fZQoaAZHQHJRTaK1og5oB0uQaAhHQJA3OUFB6a91fZQoaAZHQHRPnNke6qdoB0vCaAhHQJA3RKUVzp51fZQoaAZHQHKBPzz3AVRoB0uTaAhHQJA3ZbPhQ3x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1840, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.8.0-31-generic-x86_64-with-glibc2.10 # 31-Ubuntu SMP PREEMPT_DYNAMIC Sat Apr 20 00:40:06 UTC 2024", "Python": "3.8.19", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.24.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4309f2347a5596c45770a469a995ac36c672df364588133bd67a563bc15c9bbb
3
- size 147459
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fabc37c84f768705aaf298a9edb8383ebbcaa4b828307e0a2d17b6b24ddf857
3
+ size 147776
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,42 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x76a4d1ce0310>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x76a4d1ce03a0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x76a4d1ce0430>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x76a4d1ce04c0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x76a4d1ce0550>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x76a4d1ce05e0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x76a4d1ce0670>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x76a4d1ce0700>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x76a4d1ce0790>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x76a4d1ce0820>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x76a4d1ce08b0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x76a4d1ce0940>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x76a4d1ce1120>"
21
  },
22
  "verbose": 1,
23
- "policy_kwargs": {},
 
 
 
 
 
 
 
 
24
  "num_timesteps": 3014656,
25
  "_total_timesteps": 3000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1714485012985972468,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2JoTxPQRW889YEPnNsjTxgQ4C9AGVrPQAAgD8AAIA/pnhpvmRDfz6uvZ8+Ka6SvlWEiL27UDc9AAAAAAAAAAAzLrA94Uy5ujqwBTzPpI08iypcO+Yvdr0AAIA/AACAP3N80T21l54/KqEcP39GIr+BMpg9/xSxPgAAAAAAAAAAZhASvEgTmLrLLCU4PH0UMz0rmbom+D63AACAPwAAgD/Nila94V6Vui04/jyV8Bu1Op40uwpuGbQAAIA/AACAP8B6sj2H67k+bDcOvvxZ8b4ExYg87lUpvgAAAAAAAAAALf0NPoKVuD6eeWa+0un3vssedTzMsrS9AAAAAAAAAACzEBy9Kah6upLzcLlm8Ga0gk9AO9T3jDgAAIA/AACAPyZ2Ij4niwU/6YI/vt6VAL+Dx9A9HssZvgAAAAAAAAAAMydqPEiWoT7iQnK+1LrUvlfyjb3Ktbm9AAAAAAAAAADmvAO9hvq1Pzm3H787kS49njB4PL6d9bwAAAAAAAAAAJPVRD6lGyE+fqCnvoQIxr40mHK82gO8vQAAAAAAAAAADf8nvqIrrT/CbQO/0SsAv6iOZL7G9Rm9AAAAAAAAAAAavSm915F6u45cEr12bbC9H9QLPf4kMz8AAIA/AACAP5p8zr0LFMo9fgaYPof3Tr7LDbS7IHCKPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,13 +53,13 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJn3C0ngHiMAWyUTSkBjAF0lEdAinxpo0ygw3V9lChoBkdAR+/4oJAt4GgHS7doCEdAinz5j6N2knV9lChoBkdAb2reKKpDNWgHS9NoCEdAin0Cy6cy33V9lChoBkdAcQFjRD1GsmgHS+FoCEdAin0JSiudPXV9lChoBkdAcPBycCo0h2gHS8hoCEdAin0PnbItDnV9lChoBkdAcw3PmPo3aWgHS8JoCEdAin0RqGlANXV9lChoBkdAcORqQA+6iGgHS+poCEdAin1KmKqGUXV9lChoBkdAcxUPznRsuWgHS9FoCEdAin1mFSKm9HV9lChoBkdAc2g6/IsAemgHS8hoCEdAin1rnDBMz3V9lChoBkdAcwE0hePaMGgHS9toCEdAin2E43m3fHV9lChoBkdAcrYTuv2XcGgHS9toCEdAin4lGPPszHV9lChoBkdAb/PwhGH58GgHS+VoCEdAin5g/keZHHV9lChoBkdAcZ5G3F1jiGgHS+loCEdAin5lNlAeJnV9lChoBkdAcTASzgMtsmgHS+BoCEdAin5ltTDO1XV9lChoBkdAcfHdf9gndGgHS99oCEdAin7R/ustCnV9lChoBkdAcu/1zySV4WgHS8toCEdAin7RG2Cul3V9lChoBkdAcJ6dT5wfhmgHS7loCEdAin9ekpI+XHV9lChoBkdAcpAAprk8zWgHS75oCEdAin98DbJwKnV9lChoBkdAbbE4o7V8TmgHS75oCEdAin+CeumrKnV9lChoBkdAb5SH1OCXhWgHS81oCEdAin/DuKGcnXV9lChoBkdAbwwkAPuogmgHTQYBaAhHQIp/8IHC4z91fZQoaAZHQHI3lEuxrzpoB0vbaAhHQIp/+BYmsvJ1fZQoaAZHQG+baHbh3q1oB0vEaAhHQIqACBClabF1fZQoaAZHQHFHP1+RYA9oB0vDaAhHQIqACb+cYqJ1fZQoaAZHQE8lXwsoUi9oB0uKaAhHQIqAP6CUX551fZQoaAZHQHC0JElVtGdoB0vTaAhHQIqAVpXZGrl1fZQoaAZHQG+AEqtozvZoB0u9aAhHQIqIqQNkOI91fZQoaAZHQHAegnc+JP9oB0vIaAhHQIqI1HavicZ1fZQoaAZHQHCzWvfTCtRoB0vaaAhHQIqI2Wv8qF11fZQoaAZHQHMSeA/cFhZoB00dAWgIR0CKiNflZHNHdX2UKGgGR0ByIteQdS2qaAdLv2gIR0CKiSX3QD3edX2UKGgGR0BwGgmdAgPmaAdLwGgIR0CKid1PFefJdX2UKGgGR0BzOn2VVxS6aAdLxGgIR0CKiecsDnvEdX2UKGgGR0Bu2VDtw71aaAdLz2gIR0CKil+G47RwdX2UKGgGR0Bza6e5Fw1jaAdL0mgIR0CKipjSXt0FdX2UKGgGR0Bx1OOjqOcUaAdL/GgIR0CKiqvTPSlWdX2UKGgGR0BwWfLwF1SwaAdNLQFoCEdAiorPW6K+BnV9lChoBkdAco9k56t1ZGgHS9poCEdAiorW+wkgOnV9lChoBkdAcD75CWu5jGgHS8VoCEdAiorkUbkwOHV9lChoBkdAcq1ZmZmZmmgHS/hoCEdAios+wLVnVXV9lChoBkdAc5xsP8Q7LmgHS85oCEdAioudU0elsXV9lChoBkdAcU7qY7aIvmgHS61oCEdAiouwCr92o3V9lChoBkdAcvXowmE5AGgHS8ZoCEdAiouv863iJnV9lChoBkdAcf6WpZOi4GgHS8poCEdAiou8toSL63V9lChoBkdAdAOMfA9FF2gHTQgBaAhHQIqLvSWqtHR1fZQoaAZHQHMYZ1eSjg1oB00kAWgIR0CKi849X9zfdX2UKGgGR0Bw7LV09yLiaAdL1WgIR0CKi+IBzV+adX2UKGgGR0Bv2gTufEn9aAdLvmgIR0CKjILiMo+fdX2UKGgGR0BwMmnwXqJNaAdLwGgIR0CKjOw1zhgmdX2UKGgGR0BwxoKw6hg3aAdLtmgIR0CKjQrQPZqVdX2UKGgGR0Bz+hMN+b3HaAdLz2gIR0CKjVb1yvLYdX2UKGgGR0BzJ+0fHPu5aAdLwmgIR0CKjWtRvWH2dX2UKGgGR0BxnLzOHFglaAdL5mgIR0CKjeLtu1nedX2UKGgGR0BvUGa+evpyaAdLr2gIR0CKjgY1He7+dX2UKGgGR0ByPY3l0YCRaAdL9GgIR0CKjhJz1bqydX2UKGgGR0By4sa5wwTNaAdL1mgIR0CKjhv6TGHYdX2UKGgGR0BwlVMZgogFaAdLyWgIR0CKjkdFOO81dX2UKGgGR0BwQzWsijcmaAdLxmgIR0CKjk1uzhP1dX2UKGgGR0BzIJSl3yI6aAdLyWgIR0CKjozWPLgXdX2UKGgGR0Byo33dsSCfaAdL2GgIR0CKjpWcz67/dX2UKGgGR0BvXsJng5zYaAdL22gIR0CKjrB2wFC+dX2UKGgGR0ByUu9CeEqUaAdL5WgIR0CKjrQE6kqMdX2UKGgGR0BxNE0uUUwjaAdLqmgIR0CKjzyQPqcFdX2UKGgGR0Bwb1Grjo6kaAdL2GgIR0CKj21rIo3KdX2UKGgGR0By1R9lVcUuaAdLvGgIR0CKj5oW56MSdX2UKGgGR0Bw+dmf5DZ2aAdLtWgIR0CKj9wBHTZydX2UKGgGR0Bwecu8K5TZaAdLqmgIR0CKkF+9alk6dX2UKGgGR0By9NxKg7HRaAdLtWgIR0CKkIGGEf1ZdX2UKGgGR0BxzTynUDuCaAdL+WgIR0CKkMwKSgXedX2UKGgGR0BxNsI1LrX2aAdLxGgIR0CKkP1anrIHdX2UKGgGR0BxyqrELpiaaAdLsmgIR0CKkREbYK6XdX2UKGgGR0Byg0VpKzzFaAdLyGgIR0CKkRTx5LRKdX2UKGgGR0BxXXMpw0fpaAdL6GgIR0CKkSEvkBCEdX2UKGgGR0Bt3yDPGACoaAdLwmgIR0CKkUFeOXE7dX2UKGgGR0BwrI7fYSQHaAdL/2gIR0CKkYw3YL9ddX2UKGgGR0Bz2I2gnMMaaAdL0WgIR0CKkZzGPxQSdX2UKGgGR0BzFIVGkN4JaAdL3mgIR0CKkcOiFj/ddX2UKGgGR0BvRRPykKu0aAdLumgIR0CKkd/jsD4hdX2UKGgGR0BzuHfqHGjsaAdLtWgIR0CKkf62OQyRdX2UKGgGR0BxAKDZlFtsaAdLs2gIR0CKkiAf+0gKdX2UKGgGR0Bu29LSNOuaaAdLyWgIR0CKkqWE9MbndX2UKGgGR0ByuQrlNlAeaAdL1mgIR0CKk1MaCL/CdX2UKGgGR0BxkGugYgq3aAdL12gIR0CKk3cM3IdVdX2UKGgGR0ByysqiGnGbaAdLuWgIR0CKk5n8sMAndX2UKGgGR0ByLLLidat+aAdLv2gIR0CKk6E5hjOLdX2UKGgGR0Bxl4WCVbA2aAdLx2gIR0CKk6x9G7SRdX2UKGgGR0BwXy1ndweeaAdLt2gIR0CKk7Sy+pOvdX2UKGgGR0BxDlw0fozOaAdL5WgIR0CKk+t03fhudX2UKGgGR0BwuS3AmAskaAdLvWgIR0CKlCgCfYjCdX2UKGgGR0Bw/MwTM7lraAdL52gIR0CKlDAGB4D+dX2UKGgGR0Byi+WPcSGraAdNBQNoCEdAipR9zGPxQXV9lChoBkdAbv6kHD766GgHS81oCEdAipSK3d9DyHV9lChoBkdAbwB5LRKHwmgHS+RoCEdAipSg3974SHV9lChoBkdAcLc9Htnf22gHS89oCEdAipTJ3xFy73V9lChoBkdAczNiX6ZYxWgHS8VoCEdAipTM10knkXV9lChoBkdAcv2CIk7fYWgHS6NoCEdAipTgbQ1JlXV9lChoBkdAcWYNPgvUSmgHS+ZoCEdAipTxFI/Z/XV9lChoBkdAceLLtNSIg2gHS7FoCEdAipWVstTUAnV9lChoBkdAbwnwWFev6mgHS7poCEdAipXTgMtsenV9lChoBkdASpkQRPGhmGgHS5BoCEdAipX0Vzp5eXVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 736,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -84,7 +92,7 @@
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c197c662430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c197c6624c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c197c662550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c197c6625e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c197c662670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c197c662700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c197c662790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c197c662820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c197c6628b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c197c662940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c197c6629d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c197c662a60>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7c197c65e540>"
21
  },
22
  "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVTwAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEVGFuaJSTlHUu",
26
+ "net_arch": [
27
+ 64,
28
+ 64
29
+ ],
30
+ "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>"
31
+ },
32
  "num_timesteps": 3014656,
33
  "_total_timesteps": 3000000,
34
  "_num_timesteps_at_start": 0,
35
  "seed": null,
36
  "action_noise": null,
37
+ "start_time": 1714490292075909597,
38
  "learning_rate": 0.0003,
39
  "tensorboard_log": null,
40
  "_last_obs": {
41
  ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALObTr16lh4/nFaAPWN8Rr+8DsS9xJuiPQAAAAAAAAAArVoBvkiN9roVwEM7qs1kOBMIYzx6BG+6AACAPwAAgD8AYRI+Skn6PgO2T73tKCO/shebPn1mnD0AAAAAAAAAACZ7pD2/qBo+WpTvvhbhjb2cLYS+7XQjvgAAAAAAAAAAZoZqOsMtd7rQ2Hq5s/SPtK/yLrs9FJI4AACAPwAAgD8ziuO9EgiAP3kQL77Rszq/YK18vqNw6b0AAAAAAAAAADqFDz6NL1U+DVKzvisPsb5E9k89HR1svgAAAAAAAAAAZmYyO2JYkz89bea7vGNiv7AGKb3YKKK8AAAAAAAAAAAz+iY9SMOHuoiFBL4AX/Q45AObusOlXbgAAIA/AACAP8BwsT3zJsI/8CrmPv7lCj2I1Qs+6xp9PgAAAAAAAAAAzRw+PMSd7j5zdua89Og6v5lFJL1yHam8AAAAAAAAAABaC449JiZ2P9r0HT4roVi/F6TfPYawDj4AAAAAAAAAADOn0bx7aoG63QPRu969OTWBWFo7WA6rtAAAgD8AAIA/jezVvQ6d4T2gx6Y+j24Bvw+HNT61m2U+AAAAAAAAAAAAdSM+lPhqP/IRTz5aSje/dKaJPsto2TsAAAAAAAAAAD15kD6XFFM/okOBPWRZOb+mf7c+GFtvvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
43
  },
44
  "_last_episode_starts": {
45
  ":type:": "<class 'numpy.ndarray'>",
 
53
  "_stats_window_size": 100,
54
  "ep_info_buffer": {
55
  ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFyf0NBnjCMAWyUS8KMAXSUR0CQJYJC0F8pdX2UKGgGR0ByjcFEAo5QaAdLqGgIR0CQJZTOgQHzdX2UKGgGR0BwznphWo3raAdLpGgIR0CQJcQDFId3dX2UKGgGR0BxiVbTtsvaaAdLq2gIR0CQJccdYGMXdX2UKGgGR0Bw09IOH310aAdLqGgIR0CQJcxj8UEgdX2UKGgGR0ByHcOuq3mWaAdLxmgIR0CQJdldkauPdX2UKGgGR0Bw92bKA8SxaAdLtmgIR0CQJe127nPndX2UKGgGR0ByeSj0th/iaAdLrWgIR0CQJf27Wd3CdX2UKGgGR0BMkm7SRbKSaAdLdGgIR0CQJgixVyWBdX2UKGgGR0ByXx6qsEJTaAdLumgIR0CQJlbNr0rcdX2UKGgGR0Bx9GhufmLcaAdLv2gIR0CQJmP3BYV7dX2UKGgGR0Bwokh4dIXkaAdLqGgIR0CQJnuHvc8DdX2UKGgGR0BzoqmsNlRQaAdLxmgIR0CQJn4tYjjadX2UKGgGR0BvrHwuuievaAdLsWgIR0CQJo8SwnpjdX2UKGgGR0ByJ9BppN9IaAdLuGgIR0CQJqZRKpT/dX2UKGgGR0Bx9Jp35eqraAdLwmgIR0CQJr6Hj6vadX2UKGgGR0BxUIFhXr+paAdLvWgIR0CQJswvg3tKdX2UKGgGR0ByFVFCswL3aAdLumgIR0CQMMuZTho/dX2UKGgGR0BzqSFmFrVOaAdLvWgIR0CQMNdQwblzdX2UKGgGR0BwyoJokAxSaAdLn2gIR0CQMOW4mTkidX2UKGgGR0ByrMe1a4c4aAdLymgIR0CQMOVjqfOEdX2UKGgGR0BzIuPikwevaAdLuGgIR0CQMPN9ph4MdX2UKGgGR0BywoOCoS+QaAdL02gIR0CQMQrCm/FjdX2UKGgGR0BySv/T9bX6aAdL1WgIR0CQMTafjCHidX2UKGgGR0BwjaqCHymRaAdLp2gIR0CQMZMTewcHdX2UKGgGR0Byur0QK8cuaAdL2WgIR0CQMZx6v7m/dX2UKGgGR0BzRODpTuOTaAdL1GgIR0CQMaFOfukUdX2UKGgGR0ByE/Z00WM1aAdLy2gIR0CQMam5UcXFdX2UKGgGR0By/YyeqaPTaAdL0GgIR0CQMcZamoBJdX2UKGgGR0B0rFIZqEeyaAdL42gIR0CQMdXnQpnZdX2UKGgGR0BzL0i6g/TtaAdLtWgIR0CQMdVYISlFdX2UKGgGR0BxTh5D7ZWaaAdLwWgIR0CQMdtnwob5dX2UKGgGR0BxLhELH+6zaAdLrWgIR0CQMfhpxm03dX2UKGgGR0ByQRz5oGpuaAdLqWgIR0CQMfvVVghKdX2UKGgGR0ByBNvm5lOHaAdLlGgIR0CQMgl/H5rQdX2UKGgGR0ByjYQyyleoaAdLwGgIR0CQMipX6qKhdX2UKGgGR0BynjyVfNRnaAdL02gIR0CQMkqNp/PPdX2UKGgGR0BwSjvG6wt8aAdLqWgIR0CQMlMHKOktdX2UKGgGR0ByhVt/FzdUaAdL0WgIR0CQMlSBbwBpdX2UKGgGR0BjFKgVXV9XaAdN6ANoCEdAkDJ6bayrxXV9lChoBkdAcmVUkv9LpWgHS8loCEdAkDLVoQFs6HV9lChoBkdAcm2IInjQzGgHS8poCEdAkDLe9Jz1b3V9lChoBkdAcgj4YJmdy2gHS8ZoCEdAkDLj0UXYUXV9lChoBkdAb3SJ9iMHbGgHS7BoCEdAkDLpmyxA0XV9lChoBkdAdIgRceKba2gHS9hoCEdAkDL5aV2RrHV9lChoBkdAclBcv/R3NmgHS8ZoCEdAkDL9n5BToHV9lChoBkdAbr2HObAk9mgHS8JoCEdAkDMEPQOWjXV9lChoBkdAcnFe4TbnHWgHS75oCEdAkDMERaouPHV9lChoBkdAcSuv5gw482gHS6VoCEdAkDMsTFl05nV9lChoBkdAcDCOxSpBHGgHS5loCEdAkDNCLAHminV9lChoBkdAcCp5xiobXGgHS9xoCEdAkDNRMN+b3HV9lChoBkdAcxdnTy8SPGgHS9JoCEdAkDNUA93bEnV9lChoBkdAc/tM5wOvuGgHS/JoCEdAkDN6Vt4zJ3V9lChoBkdAVDIbCJoCdWgHS3FoCEdAkDOMCkoF3nV9lChoBkdAc6AKWLP2PGgHS9BoCEdAkDOWZqmCRXV9lChoBkdAc3LAkcCHRGgHS9poCEdAkDPZc9nscHV9lChoBkdAcua7bcoH9mgHS/toCEdAkDPophF3IXV9lChoBkdAcUUFcpsoD2gHS59oCEdAkDQDsD4gzXV9lChoBkdAcHzvt+kP+WgHS7NoCEdAkDQFgYxcmnV9lChoBkdAcrn36AOJ+GgHS7hoCEdAkDQXZ5AyEnV9lChoBkdAcVaiuMdcS2gHS4toCEdAkDQq1LJ0XHV9lChoBkdAc3I+lCTlk2gHS7poCEdAkDQ1mFrVOXV9lChoBkdAcaCTsY2sJmgHS8doCEdAkDRK0tyxRnV9lChoBkdAchwNorWiDmgHS8JoCEdAkDRxCdBjWnV9lChoBkdAcgwqmCROlGgHS69oCEdAkDR1yWAwwnV9lChoBkdAcLbYf4h2XGgHS7hoCEdAkDSIGIKtxXV9lChoBkdAcuyrvsqrimgHTQABaAhHQJA0icVgx8F1fZQoaAZHQHJ0DV2A5JdoB0uraAhHQJA0s8mrsB11fZQoaAZHQHSAQTmGM4toB0vMaAhHQJA00TqSowV1fZQoaAZHQHLPfOIInjRoB0vGaAhHQJA02ZF5Oah1fZQoaAZHQHBRKB3A2ydoB0ukaAhHQJA07T5O8Ch1fZQoaAZHQHBUwf6oESxoB0u0aAhHQJA1F8qnWJ91fZQoaAZHQHPXBX0XgtRoB0u5aAhHQJA1QkyDZlF1fZQoaAZHQHLLQDq4YrJoB0unaAhHQJA1WrPt2LZ1fZQoaAZHQHMVOZkTYd1oB0vSaAhHQJA1h9Tgl4V1fZQoaAZHQHM+w3o9s8BoB0vqaAhHQJA1nwy6+WZ1fZQoaAZHQG/rfvOQhfVoB0umaAhHQJA1oam4y451fZQoaAZHQHL6HmFJxvNoB0vXaAhHQJA1qlnAZbZ1fZQoaAZHQHGG606YE4hoB0u2aAhHQJA10RmK64F1fZQoaAZHQHKzfPszEaVoB0voaAhHQJA17Pt2LYR1fZQoaAZHQHMAt8Aq/dtoB0vFaAhHQJA171+RYA91fZQoaAZHQHARRaHKwINoB0uoaAhHQJA2Dlp48lp1fZQoaAZHQHKLdfPX05FoB0u9aAhHQJA2DllsguB1fZQoaAZHQHPwraAWi11oB0vGaAhHQJA2Omm+Cbt1fZQoaAZHQHI/vwd8zANoB0v+aAhHQJA2OpYLb6B1fZQoaAZHQHA7SkXUH6doB0uuaAhHQJA2VoXbdrR1fZQoaAZHQHF9Sgbp/w1oB0vPaAhHQJA2ZRDTjNp1fZQoaAZHQG9TEzXSSeRoB0u4aAhHQJA2jVlPJq91fZQoaAZHQHIICM98qnZoB0uZaAhHQJA2lp9JBgN1fZQoaAZHQHMASI1tO21oB0vGaAhHQJA2vSThYNl1fZQoaAZHQHJOmbkOqedoB0vAaAhHQJA28kVvddp1fZQoaAZHQHPvFHrhR65oB0vGaAhHQJA3AACGN711fZQoaAZHQHIK7cbiqABoB0uhaAhHQJA3B/ustCl1fZQoaAZHQHFjk6kqMFVoB0vQaAhHQJA3G53C9AZ1fZQoaAZHQHIaTDXOGCZoB0uiaAhHQJA3LES/TLJ1fZQoaAZHQHFPVbmlqJxoB0vDaAhHQJA3LCGetjl1fZQoaAZHQHIgLHp8neBoB0uoaAhHQJA3NoZhrnF1fZQoaAZHQHJRTaK1og5oB0uQaAhHQJA3OUFB6a91fZQoaAZHQHRPnNke6qdoB0vCaAhHQJA3RKUVzp51fZQoaAZHQHKBPzz3AVRoB0uTaAhHQJA3ZbPhQ3x1ZS4="
57
  },
58
  "ep_success_buffer": {
59
  ":type:": "<class 'collections.deque'>",
60
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
61
  },
62
+ "_n_updates": 1840,
63
  "observation_space": {
64
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
65
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
92
  "vf_coef": 0.5,
93
  "max_grad_norm": 0.5,
94
  "batch_size": 64,
95
+ "n_epochs": 10,
96
  "clip_range": {
97
  ":type:": "<class 'function'>",
98
  ":serialized:": "gAWV0AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2RhdmlkL2FuYWNvbmRhMy9lbnZzL3Rlc3QvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3223a5a1e8cc4b0b40dd0be1ff90d31879ac7ea0d100ef162e8e98865f69fbd5
3
  size 87978
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29ebc1b52d11ccff51151c4003a16e5138ea80cca5de615b02534d24f080561c
3
  size 87978
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7284e008b4391271b99df1e6b0070eea9d02fd4f1153225b9b8c217efa8ec48a
3
  size 43634
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0998a672584b7c27cae693a0655fccbc03da15223337981d166cdd6ed7ddc084
3
  size 43634
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 284.0855858, "std_reward": 16.732494390240525, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-30T22:05:13.631089"}
 
1
+ {"mean_reward": 288.4738436, "std_reward": 15.409782077387662, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-30T23:41:10.416919"}