GGUF
English
llama-cpp
gguf-my-repo
Inference Endpoints
DavidAU's picture
Upload README.md with huggingface_hub
f748e5e verified
---
language:
- en
license: apache-2.0
tags:
- llama-cpp
- gguf-my-repo
datasets:
- togethercomputer/RedPajama-Data-1T
- togethercomputer/RedPajama-Data-Instruct
widget:
- text: "Label the sentences as either 'positive', 'negative', 'mixed', or 'neutral':\
\ \n\nSentence: I can say that there isn't anything I would change.\nLabel: positive\n\
\nSentence: I'm not sure about this.\nLabel: neutral\n\nSentence: I liked some\
\ parts but I didn't like other parts.\nLabel: mixed\n\nSentence: I think the\
\ background image could have been better.\nLabel: negative\n\nSentence: I really\
\ like it.\nLabel:"
example_title: Sentiment Analysis
- text: 'Please answer the following question:
Question: What is the capital of Canada?
Answer: Ottawa
Question: What is the currency of Switzerland?
Answer: Swiss franc
Question: In which country is Wisconsin located?
Answer:'
example_title: Question Answering
- text: 'Given a news article, classify its topic.
Possible labels: 1. World 2. Sports 3. Business 4. Sci/Tech
Article: A nearby star thought to harbor comets and asteroids now appears to be
home to planets, too.
Label: Sci/Tech
Article: Soaring crude prices plus worries about the economy and the outlook for
earnings are expected to hang over the stock market next week during the depth
of the summer doldrums.
Label: Business
Article: Murtagh a stickler for success Northeastern field hockey coach Cheryl
Murtagh doesn''t want the glare of the spotlight that shines on her to detract
from a team that has been the America East champion for the past three years and
has been to the NCAA tournament 13 times.
Label::'
example_title: Topic Classification
- text: 'Paraphrase the given sentence into a different sentence.
Input: Can you recommend some upscale restaurants in New York?
Output: What upscale restaurants do you recommend in New York?
Input: What are the famous places we should not miss in Paris?
Output: Recommend some of the best places to visit in Paris?
Input: Could you recommend some hotels that have cheap price in Zurich?
Output:'
example_title: Paraphrasing
- text: 'Given a review from Amazon''s food products, the task is to generate a short
summary of the given review in the input.
Input: I have bought several of the Vitality canned dog food products and have
found them all to be of good quality. The product looks more like a stew than
a processed meat and it smells better. My Labrador is finicky and she appreciates
this product better than most.
Output: Good Quality Dog Food
Input: Product arrived labeled as Jumbo Salted Peanuts...the peanuts were actually
small sized unsalted. Not sure if this was an error or if the vendor intended
to represent the product as ''Jumbo''.
Output: Not as Advertised
Input: My toddler loves this game to a point where he asks for it. That''s a big
thing for me. Secondly, no glitching unlike one of their competitors (PlayShifu).
Any tech I don’t have to reach out to support for help is a good tech for me.
I even enjoy some of the games and activities in this. Overall, this is a product
that shows that the developers took their time and made sure people would not
be asking for refund. I’ve become bias regarding this product and honestly I look
forward to buying more of this company’s stuff. Please keep up the great work.
Output:'
example_title: Text Summarization
- text: 'Identify which sense of a word is meant in a given context.
Context: The river overflowed the bank.
Word: bank
Sense: river bank
Context: A mouse takes much more room than a trackball.
Word: mouse
Sense: computer mouse
Context: The bank will not be accepting cash on Saturdays.
Word: bank
Sense: commercial (finance) banks
Context: Bill killed the project
Word: kill
Sense:'
example_title: Word Sense Disambiguation
- text: 'Given a pair of sentences, choose whether the two sentences agree (entailment)/disagree
(contradiction) with each other.
Possible labels: 1. entailment 2. contradiction
Sentence 1: The skier was on the edge of the ramp. Sentence 2: The skier was dressed
in winter clothes.
Label: entailment
Sentence 1: The boy skated down the staircase railing. Sentence 2: The boy is
a newbie skater.
Label: contradiction
Sentence 1: Two middle-aged people stand by a golf hole. Sentence 2: A couple
riding in a golf cart.
Label:'
example_title: Natural Language Inference
inference:
parameters:
temperature: 0.7
top_p: 0.7
top_k: 50
max_new_tokens: 128
---
# DavidAU/RedPajama-INCITE-7B-Instruct-Q6_K-GGUF
This model was converted to GGUF format from [`togethercomputer/RedPajama-INCITE-7B-Instruct`](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo DavidAU/RedPajama-INCITE-7B-Instruct-Q6_K-GGUF --model redpajama-incite-7b-instruct.Q6_K.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo DavidAU/RedPajama-INCITE-7B-Instruct-Q6_K-GGUF --model redpajama-incite-7b-instruct.Q6_K.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m redpajama-incite-7b-instruct.Q6_K.gguf -n 128
```