File size: 1,731 Bytes
53ff018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0c8e05
 
53ff018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e674095
7e19241
 
53ff018
7e19241
 
53ff018
 
 
7e19241
53ff018
 
 
 
 
f0c8e05
 
 
 
 
53ff018
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6192
- Accuracy: 0.83

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00013888307813432008
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.203         | 1.0   | 112  | 1.2880          | 0.56     |
| 0.7766        | 2.0   | 225  | 0.9546          | 0.74     |
| 0.7045        | 3.0   | 337  | 0.9271          | 0.69     |
| 0.462         | 4.0   | 450  | 0.8588          | 0.79     |
| 0.236         | 4.98  | 560  | 0.6192          | 0.83     |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3