SentenceTransformer based on mixedbread-ai/mxbai-embed-large-v1
This is a sentence-transformers model finetuned from mixedbread-ai/mxbai-embed-large-v1. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: mixedbread-ai/mxbai-embed-large-v1
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Daxtra/onet_sbert-v2")
# Run inference
sentences = [
'Determine shipping methods, routes, or rates for materials to be shipped.\nPrepare documents, such as work orders, bills of lading, or shipping orders, to route materials.\nPack, seal, label, or affix postage to prepare materials for shipping, using hand tools, power tools, or postage meter.\nRequisition and store shipping materials and supplies to maintain inventory of stock.\nConfer or correspond with establishment representatives to rectify problems, such as damages, shortages, or nonconformance to specifications.',
'Shipping, Receiving, and Inventory Clerks - Analyze shipping information to make routing decisions.\nRecord shipping information.\nCoordinate shipping activities with external parties.',
'Office Machine Operators, Except Computer - Monitor equipment operation to ensure proper functioning.\nRead work orders to determine material or setup requirements.\nSort materials or products.\nReport maintenance or equipment problems to appropriate personnel.\nOrder materials, supplies, or equipment.\nCompile data or documentation.\nOperate office equipment.\nProvide information to coworkers.\nDeliver items.\nClean facilities or equipment.\nMaintain office equipment in proper operating condition.\nAttach identification information to products, items or containers.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,856 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 25 tokens
- mean: 88.28 tokens
- max: 128 tokens
- min: 17 tokens
- mean: 82.52 tokens
- max: 128 tokens
- Samples:
sentence_0 sentence_1 Compile information about new accounts, enter account information into computers, and file related forms or other documents.
Obtain credit records from reporting agencies.
Perform teller duties as required.
Duplicate records for distribution to branch offices.
Execute wire transfers of funds.
Collect and record customer deposits and fees and issue receipts, using computers.
Inform customers of procedures for applying for services, such as ATM cards, direct deposit of checks, and certificates of deposit.New Accounts Clerks - Refer customers to appropriate personnel.
Compile data or documentation.
Operate office equipment.
Obtain personal or financial information about customers or applicants.
Discuss goods or services information with customers or patrons.
Distribute materials to employees or customers.
Schedule appointments.
Type documents.
Sell products or services.Midwives - Establish and follow emergency or contingency plans for mothers and newborns.
Inform patients of how to prepare and supply birth sites.
Assess birthing environments to ensure cleanliness, safety, and the availability of appropriate supplies.
Perform annual gynecologic exams, including pap smears and breast exams.
Provide, or refer patients to other providers for, education or counseling on topics such as genetic testing, newborn care, contraception, or breastfeeding.Midwives - Assess physical conditions of patients to aid in diagnosis or treatment.
Measure the physical or physiological attributes of patients.
Communicate detailed medical information to patients or family members.
Collect biological specimens from patients.
Care for women during pregnancy and childbirth.
Evaluate patient functioning, capabilities, or health.
Record patient medical histories.
Refer patients to other healthcare practitioners or health resources.
Collect medical information from patients, family members, or other medical professionals.
Analyze quantitative data to determine effectiveness of treatments or therapies.
Treat patients using alternative medical procedures.
Diagnose medical conditions.
Develop medical treatment plans.
Position patients for treatment or examination.
Provide health and wellness advice to patients, program participants, or caregivers.
Examine patients to assess general physical condition.
Analyze patient data to determine patient needs or treatment goals.
Conduct research to increase knowledge about medical issues.
Monitor patient conditions during treatments, procedures, or activities.
Prepare medical supplies or equipment for use.
Prepare official health documents or records.
Analyze test data or images to inform diagnosis or treatment.
Communicate health and wellness information to the public.
Treat medical emergencies.
Test biological specimens to gather information about patient conditions.Plan, prepare, and develop various teaching aids, such as bibliographies, charts, and graphs.
Clean classrooms.
Operate and maintain audio-visual equipment.Distribute instructional or library materials.
Clean facilities or work areas.
Supervise school or student activities.
Collaborate with other teaching professionals to develop educational programs.
Serve on institutional or departmental committees.
Create technology-based learning materials.
Maintain clean work areas.
Evaluate student work.
Plan educational activities.
Set up classroom materials or equipment.
Lead classes or community events.
Develop instructional materials. - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 24per_device_eval_batch_size
: 24num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 24per_device_eval_batch_size
: 24per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step |
---|---|
0.0984 | 24 |
0.1967 | 48 |
0.2951 | 72 |
0.3934 | 96 |
0.4918 | 120 |
0.5902 | 144 |
0.6885 | 168 |
0.7869 | 192 |
0.8852 | 216 |
0.9836 | 240 |
1.0 | 244 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Daxtra/onet_sbert-v2
Base model
mixedbread-ai/mxbai-embed-large-v1