phitune / README.md
Deadwalker0's picture
Upload folder using huggingface_hub
f6ae852 verified
|
raw
history blame
3.62 kB
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/phi-1_5
model-index:
- name: phi-sft-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: microsoft/phi-1_5
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: garage-bAInd/Open-Platypus
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./phi-sft-out
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_torch
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.000003
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
pad_token: "<|endoftext|>"
```
</details><br>
# phi-sft-out
This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2548
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0668 | 0.0 | 1 | 1.2826 |
| 0.9408 | 0.25 | 580 | 1.2613 |
| 1.2121 | 0.5 | 1160 | 1.2559 |
| 0.9644 | 0.75 | 1740 | 1.2562 |
| 0.9582 | 1.0 | 2320 | 1.2556 |
| 1.0009 | 1.23 | 2900 | 1.2559 |
| 0.7816 | 1.48 | 3480 | 1.2556 |
| 0.9843 | 1.73 | 4060 | 1.2552 |
| 0.8877 | 1.98 | 4640 | 1.2559 |
| 0.8498 | 2.21 | 5220 | 1.2554 |
| 0.9163 | 2.46 | 5800 | 1.2550 |
| 1.0539 | 2.71 | 6380 | 1.2545 |
| 0.9533 | 2.96 | 6960 | 1.2547 |
| 0.6969 | 3.19 | 7540 | 1.2547 |
| 0.6204 | 3.44 | 8120 | 1.2547 |
| 0.891 | 3.69 | 8700 | 1.2548 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0