|
--- |
|
license: mit |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: microsoft/phi-1_5 |
|
model-index: |
|
- name: phi-sft-out |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: microsoft/phi-1_5 |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: garage-bAInd/Open-Platypus |
|
type: alpaca |
|
|
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./phi-sft-out |
|
|
|
sequence_len: 2048 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
lora_r: 64 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 2 |
|
num_epochs: 4 |
|
optimizer: adamw_torch |
|
adam_beta2: 0.95 |
|
adam_epsilon: 0.00001 |
|
max_grad_norm: 1.0 |
|
lr_scheduler: cosine |
|
learning_rate: 0.000003 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: true |
|
|
|
gradient_checkpointing: true |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: True |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 100 |
|
evals_per_epoch: 4 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.1 |
|
fsdp: |
|
fsdp_config: |
|
resize_token_embeddings_to_32x: true |
|
special_tokens: |
|
pad_token: "<|endoftext|>" |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# phi-sft-out |
|
|
|
This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2548 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.0668 | 0.0 | 1 | 1.2826 | |
|
| 0.9408 | 0.25 | 580 | 1.2613 | |
|
| 1.2121 | 0.5 | 1160 | 1.2559 | |
|
| 0.9644 | 0.75 | 1740 | 1.2562 | |
|
| 0.9582 | 1.0 | 2320 | 1.2556 | |
|
| 1.0009 | 1.23 | 2900 | 1.2559 | |
|
| 0.7816 | 1.48 | 3480 | 1.2556 | |
|
| 0.9843 | 1.73 | 4060 | 1.2552 | |
|
| 0.8877 | 1.98 | 4640 | 1.2559 | |
|
| 0.8498 | 2.21 | 5220 | 1.2554 | |
|
| 0.9163 | 2.46 | 5800 | 1.2550 | |
|
| 1.0539 | 2.71 | 6380 | 1.2545 | |
|
| 0.9533 | 2.96 | 6960 | 1.2547 | |
|
| 0.6969 | 3.19 | 7540 | 1.2547 | |
|
| 0.6204 | 3.44 | 8120 | 1.2547 | |
|
| 0.891 | 3.69 | 8700 | 1.2548 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.8.2 |
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.0 |