SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 13 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
delete_category |
|
delete_product |
|
greet-who_are_you |
|
create_website |
|
read_category |
|
update_store |
|
update_category |
|
greet-good_bye |
|
update_product |
|
read_product |
|
delete_store |
|
read_store |
|
greet-hi |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9744 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Decius/sft_model_project")
# Run inference
preds = model("أحذف المنتج من المخزن")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 5.7846 | 13 |
Label | Training Sample Count |
---|---|
greet-hi | 5 |
greet-who_are_you | 7 |
greet-good_bye | 5 |
create_website | 21 |
read_category | 3 |
update_category | 3 |
delete_category | 3 |
read_product | 3 |
update_product | 3 |
delete_product | 3 |
read_store | 3 |
update_store | 3 |
delete_store | 3 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- evaluation_strategy: epoch
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0011 | 1 | 0.1475 | - |
0.0111 | 10 | 0.1345 | - |
0.0222 | 20 | 0.0807 | - |
0.0333 | 30 | 0.0943 | - |
0.0444 | 40 | 0.0785 | - |
0.0555 | 50 | 0.1016 | - |
0.0666 | 60 | 0.0756 | - |
0.0777 | 70 | 0.0775 | - |
0.0888 | 80 | 0.0368 | - |
0.0999 | 90 | 0.0635 | - |
0.1110 | 100 | 0.0395 | - |
0.1221 | 110 | 0.0279 | - |
0.1332 | 120 | 0.0217 | - |
0.1443 | 130 | 0.0254 | - |
0.1554 | 140 | 0.0406 | - |
0.1665 | 150 | 0.0143 | - |
0.1776 | 160 | 0.0482 | - |
0.1887 | 170 | 0.042 | - |
0.1998 | 180 | 0.0286 | - |
0.2109 | 190 | 0.012 | - |
0.2220 | 200 | 0.0258 | - |
0.2331 | 210 | 0.0193 | - |
0.2442 | 220 | 0.0126 | - |
0.2553 | 230 | 0.0342 | - |
0.2664 | 240 | 0.0238 | - |
0.2775 | 250 | 0.0111 | - |
0.2886 | 260 | 0.0101 | - |
0.2997 | 270 | 0.0099 | - |
0.3108 | 280 | 0.0208 | - |
0.3219 | 290 | 0.0089 | - |
0.3330 | 300 | 0.0276 | - |
0.3441 | 310 | 0.0099 | - |
0.3552 | 320 | 0.0191 | - |
0.3663 | 330 | 0.0199 | - |
0.3774 | 340 | 0.0095 | - |
0.3885 | 350 | 0.0142 | - |
0.3996 | 360 | 0.0083 | - |
0.4107 | 370 | 0.0079 | - |
0.4218 | 380 | 0.0072 | - |
0.4329 | 390 | 0.0098 | - |
0.4440 | 400 | 0.01 | - |
0.4550 | 410 | 0.0084 | - |
0.4661 | 420 | 0.0024 | - |
0.4772 | 430 | 0.0176 | - |
0.4883 | 440 | 0.0068 | - |
0.4994 | 450 | 0.0209 | - |
0.5105 | 460 | 0.0038 | - |
0.5216 | 470 | 0.0063 | - |
0.5327 | 480 | 0.034 | - |
0.5438 | 490 | 0.0191 | - |
0.5549 | 500 | 0.0159 | - |
0.5660 | 510 | 0.0088 | - |
0.5771 | 520 | 0.0032 | - |
0.5882 | 530 | 0.0045 | - |
0.5993 | 540 | 0.0192 | - |
0.6104 | 550 | 0.0123 | - |
0.6215 | 560 | 0.0048 | - |
0.6326 | 570 | 0.0068 | - |
0.6437 | 580 | 0.0036 | - |
0.6548 | 590 | 0.0123 | - |
0.6659 | 600 | 0.0104 | - |
0.6770 | 610 | 0.0023 | - |
0.6881 | 620 | 0.0062 | - |
0.6992 | 630 | 0.0048 | - |
0.7103 | 640 | 0.0063 | - |
0.7214 | 650 | 0.0012 | - |
0.7325 | 660 | 0.0026 | - |
0.7436 | 670 | 0.0136 | - |
0.7547 | 680 | 0.0144 | - |
0.7658 | 690 | 0.0045 | - |
0.7769 | 700 | 0.0013 | - |
0.7880 | 710 | 0.0058 | - |
0.7991 | 720 | 0.0056 | - |
0.8102 | 730 | 0.004 | - |
0.8213 | 740 | 0.0023 | - |
0.8324 | 750 | 0.0047 | - |
0.8435 | 760 | 0.001 | - |
0.8546 | 770 | 0.0028 | - |
0.8657 | 780 | 0.0042 | - |
0.8768 | 790 | 0.0016 | - |
0.8879 | 800 | 0.002 | - |
0.8990 | 810 | 0.0004 | - |
0.9101 | 820 | 0.0034 | - |
0.9212 | 830 | 0.0016 | - |
0.9323 | 840 | 0.0076 | - |
0.9434 | 850 | 0.0021 | - |
0.9545 | 860 | 0.0027 | - |
0.9656 | 870 | 0.0017 | - |
0.9767 | 880 | 0.0024 | - |
0.9878 | 890 | 0.0014 | - |
0.9989 | 900 | 0.0015 | - |
1.0 | 901 | - | 0.0316 |
1.0100 | 910 | 0.0014 | - |
1.0211 | 920 | 0.0009 | - |
1.0322 | 930 | 0.0015 | - |
1.0433 | 940 | 0.0023 | - |
1.0544 | 950 | 0.0004 | - |
1.0655 | 960 | 0.0006 | - |
1.0766 | 970 | 0.001 | - |
1.0877 | 980 | 0.0005 | - |
1.0988 | 990 | 0.0044 | - |
1.1099 | 1000 | 0.0011 | - |
1.1210 | 1010 | 0.0008 | - |
1.1321 | 1020 | 0.0008 | - |
1.1432 | 1030 | 0.0007 | - |
1.1543 | 1040 | 0.0004 | - |
1.1654 | 1050 | 0.0009 | - |
1.1765 | 1060 | 0.0017 | - |
1.1876 | 1070 | 0.002 | - |
1.1987 | 1080 | 0.0008 | - |
1.2098 | 1090 | 0.002 | - |
1.2209 | 1100 | 0.0005 | - |
1.2320 | 1110 | 0.0012 | - |
1.2431 | 1120 | 0.002 | - |
1.2542 | 1130 | 0.0012 | - |
1.2653 | 1140 | 0.0025 | - |
1.2764 | 1150 | 0.0008 | - |
1.2875 | 1160 | 0.0009 | - |
1.2986 | 1170 | 0.0011 | - |
1.3097 | 1180 | 0.0004 | - |
1.3208 | 1190 | 0.001 | - |
1.3319 | 1200 | 0.0008 | - |
1.3430 | 1210 | 0.0005 | - |
1.3541 | 1220 | 0.0006 | - |
1.3651 | 1230 | 0.0007 | - |
1.3762 | 1240 | 0.0009 | - |
1.3873 | 1250 | 0.0008 | - |
1.3984 | 1260 | 0.0009 | - |
1.4095 | 1270 | 0.0009 | - |
1.4206 | 1280 | 0.0008 | - |
1.4317 | 1290 | 0.0007 | - |
1.4428 | 1300 | 0.001 | - |
1.4539 | 1310 | 0.0004 | - |
1.4650 | 1320 | 0.0004 | - |
1.4761 | 1330 | 0.0008 | - |
1.4872 | 1340 | 0.0003 | - |
1.4983 | 1350 | 0.0004 | - |
1.5094 | 1360 | 0.0096 | - |
1.5205 | 1370 | 0.001 | - |
1.5316 | 1380 | 0.0006 | - |
1.5427 | 1390 | 0.0015 | - |
1.5538 | 1400 | 0.0008 | - |
1.5649 | 1410 | 0.0006 | - |
1.5760 | 1420 | 0.0007 | - |
1.5871 | 1430 | 0.0009 | - |
1.5982 | 1440 | 0.0004 | - |
1.6093 | 1450 | 0.0013 | - |
1.6204 | 1460 | 0.0007 | - |
1.6315 | 1470 | 0.0004 | - |
1.6426 | 1480 | 0.0005 | - |
1.6537 | 1490 | 0.0006 | - |
1.6648 | 1500 | 0.0008 | - |
1.6759 | 1510 | 0.0007 | - |
1.6870 | 1520 | 0.0005 | - |
1.6981 | 1530 | 0.0004 | - |
1.7092 | 1540 | 0.0005 | - |
1.7203 | 1550 | 0.0007 | - |
1.7314 | 1560 | 0.0006 | - |
1.7425 | 1570 | 0.0004 | - |
1.7536 | 1580 | 0.0006 | - |
1.7647 | 1590 | 0.0005 | - |
1.7758 | 1600 | 0.0006 | - |
1.7869 | 1610 | 0.0011 | - |
1.7980 | 1620 | 0.0007 | - |
1.8091 | 1630 | 0.0005 | - |
1.8202 | 1640 | 0.0005 | - |
1.8313 | 1650 | 0.0003 | - |
1.8424 | 1660 | 0.0004 | - |
1.8535 | 1670 | 0.0006 | - |
1.8646 | 1680 | 0.0005 | - |
1.8757 | 1690 | 0.0006 | - |
1.8868 | 1700 | 0.0004 | - |
1.8979 | 1710 | 0.0004 | - |
1.9090 | 1720 | 0.0002 | - |
1.9201 | 1730 | 0.0005 | - |
1.9312 | 1740 | 0.0005 | - |
1.9423 | 1750 | 0.001 | - |
1.9534 | 1760 | 0.0006 | - |
1.9645 | 1770 | 0.001 | - |
1.9756 | 1780 | 0.0004 | - |
1.9867 | 1790 | 0.0005 | - |
1.9978 | 1800 | 0.0002 | - |
2.0 | 1802 | - | 0.0260 |
2.0089 | 1810 | 0.0005 | - |
2.0200 | 1820 | 0.0005 | - |
2.0311 | 1830 | 0.0004 | - |
2.0422 | 1840 | 0.0005 | - |
2.0533 | 1850 | 0.0002 | - |
2.0644 | 1860 | 0.0005 | - |
2.0755 | 1870 | 0.0007 | - |
2.0866 | 1880 | 0.0005 | - |
2.0977 | 1890 | 0.0003 | - |
2.1088 | 1900 | 0.0004 | - |
2.1199 | 1910 | 0.0003 | - |
2.1310 | 1920 | 0.0014 | - |
2.1421 | 1930 | 0.0005 | - |
2.1532 | 1940 | 0.0002 | - |
2.1643 | 1950 | 0.0003 | - |
2.1754 | 1960 | 0.0007 | - |
2.1865 | 1970 | 0.0005 | - |
2.1976 | 1980 | 0.0004 | - |
2.2087 | 1990 | 0.0006 | - |
2.2198 | 2000 | 0.0005 | - |
2.2309 | 2010 | 0.0003 | - |
2.2420 | 2020 | 0.0006 | - |
2.2531 | 2030 | 0.0006 | - |
2.2642 | 2040 | 0.0006 | - |
2.2752 | 2050 | 0.0003 | - |
2.2863 | 2060 | 0.0014 | - |
2.2974 | 2070 | 0.0004 | - |
2.3085 | 2080 | 0.0005 | - |
2.3196 | 2090 | 0.0004 | - |
2.3307 | 2100 | 0.0004 | - |
2.3418 | 2110 | 0.0004 | - |
2.3529 | 2120 | 0.0004 | - |
2.3640 | 2130 | 0.0011 | - |
2.3751 | 2140 | 0.0003 | - |
2.3862 | 2150 | 0.0003 | - |
2.3973 | 2160 | 0.0005 | - |
2.4084 | 2170 | 0.0006 | - |
2.4195 | 2180 | 0.0004 | - |
2.4306 | 2190 | 0.0002 | - |
2.4417 | 2200 | 0.0002 | - |
2.4528 | 2210 | 0.0006 | - |
2.4639 | 2220 | 0.0003 | - |
2.4750 | 2230 | 0.0002 | - |
2.4861 | 2240 | 0.0006 | - |
2.4972 | 2250 | 0.0006 | - |
2.5083 | 2260 | 0.0004 | - |
2.5194 | 2270 | 0.0005 | - |
2.5305 | 2280 | 0.0004 | - |
2.5416 | 2290 | 0.0005 | - |
2.5527 | 2300 | 0.0005 | - |
2.5638 | 2310 | 0.0006 | - |
2.5749 | 2320 | 0.0005 | - |
2.5860 | 2330 | 0.0003 | - |
2.5971 | 2340 | 0.0007 | - |
2.6082 | 2350 | 0.0002 | - |
2.6193 | 2360 | 0.0003 | - |
2.6304 | 2370 | 0.0003 | - |
2.6415 | 2380 | 0.0004 | - |
2.6526 | 2390 | 0.0004 | - |
2.6637 | 2400 | 0.0005 | - |
2.6748 | 2410 | 0.0003 | - |
2.6859 | 2420 | 0.0003 | - |
2.6970 | 2430 | 0.0003 | - |
2.7081 | 2440 | 0.0005 | - |
2.7192 | 2450 | 0.0006 | - |
2.7303 | 2460 | 0.0005 | - |
2.7414 | 2470 | 0.0005 | - |
2.7525 | 2480 | 0.0006 | - |
2.7636 | 2490 | 0.0002 | - |
2.7747 | 2500 | 0.0002 | - |
2.7858 | 2510 | 0.0002 | - |
2.7969 | 2520 | 0.0007 | - |
2.8080 | 2530 | 0.0003 | - |
2.8191 | 2540 | 0.0004 | - |
2.8302 | 2550 | 0.0003 | - |
2.8413 | 2560 | 0.0002 | - |
2.8524 | 2570 | 0.0006 | - |
2.8635 | 2580 | 0.0003 | - |
2.8746 | 2590 | 0.0002 | - |
2.8857 | 2600 | 0.0002 | - |
2.8968 | 2610 | 0.0002 | - |
2.9079 | 2620 | 0.0003 | - |
2.9190 | 2630 | 0.0003 | - |
2.9301 | 2640 | 0.0002 | - |
2.9412 | 2650 | 0.0002 | - |
2.9523 | 2660 | 0.0002 | - |
2.9634 | 2670 | 0.0003 | - |
2.9745 | 2680 | 0.0003 | - |
2.9856 | 2690 | 0.0003 | - |
2.9967 | 2700 | 0.0003 | - |
3.0 | 2703 | - | 0.0244 |
3.0078 | 2710 | 0.0002 | - |
3.0189 | 2720 | 0.0004 | - |
3.0300 | 2730 | 0.0002 | - |
3.0411 | 2740 | 0.0003 | - |
3.0522 | 2750 | 0.0003 | - |
3.0633 | 2760 | 0.0002 | - |
3.0744 | 2770 | 0.0001 | - |
3.0855 | 2780 | 0.0002 | - |
3.0966 | 2790 | 0.0003 | - |
3.1077 | 2800 | 0.0003 | - |
3.1188 | 2810 | 0.0004 | - |
3.1299 | 2820 | 0.0005 | - |
3.1410 | 2830 | 0.0002 | - |
3.1521 | 2840 | 0.0003 | - |
3.1632 | 2850 | 0.0002 | - |
3.1743 | 2860 | 0.0003 | - |
3.1853 | 2870 | 0.0002 | - |
3.1964 | 2880 | 0.0007 | - |
3.2075 | 2890 | 0.0002 | - |
3.2186 | 2900 | 0.0002 | - |
3.2297 | 2910 | 0.0002 | - |
3.2408 | 2920 | 0.0003 | - |
3.2519 | 2930 | 0.0002 | - |
3.2630 | 2940 | 0.0002 | - |
3.2741 | 2950 | 0.0003 | - |
3.2852 | 2960 | 0.0005 | - |
3.2963 | 2970 | 0.0003 | - |
3.3074 | 2980 | 0.0002 | - |
3.3185 | 2990 | 0.0003 | - |
3.3296 | 3000 | 0.0003 | - |
3.3407 | 3010 | 0.0002 | - |
3.3518 | 3020 | 0.0002 | - |
3.3629 | 3030 | 0.0003 | - |
3.3740 | 3040 | 0.0001 | - |
3.3851 | 3050 | 0.0003 | - |
3.3962 | 3060 | 0.0003 | - |
3.4073 | 3070 | 0.0004 | - |
3.4184 | 3080 | 0.0002 | - |
3.4295 | 3090 | 0.0003 | - |
3.4406 | 3100 | 0.0003 | - |
3.4517 | 3110 | 0.0002 | - |
3.4628 | 3120 | 0.0002 | - |
3.4739 | 3130 | 0.0002 | - |
3.4850 | 3140 | 0.0004 | - |
3.4961 | 3150 | 0.0005 | - |
3.5072 | 3160 | 0.0006 | - |
3.5183 | 3170 | 0.0002 | - |
3.5294 | 3180 | 0.0002 | - |
3.5405 | 3190 | 0.0004 | - |
3.5516 | 3200 | 0.0003 | - |
3.5627 | 3210 | 0.0002 | - |
3.5738 | 3220 | 0.0001 | - |
3.5849 | 3230 | 0.0002 | - |
3.5960 | 3240 | 0.0002 | - |
3.6071 | 3250 | 0.0001 | - |
3.6182 | 3260 | 0.0002 | - |
3.6293 | 3270 | 0.0002 | - |
3.6404 | 3280 | 0.0002 | - |
3.6515 | 3290 | 0.0002 | - |
3.6626 | 3300 | 0.0003 | - |
3.6737 | 3310 | 0.0003 | - |
3.6848 | 3320 | 0.0003 | - |
3.6959 | 3330 | 0.0002 | - |
3.7070 | 3340 | 0.0001 | - |
3.7181 | 3350 | 0.0002 | - |
3.7292 | 3360 | 0.0002 | - |
3.7403 | 3370 | 0.0002 | - |
3.7514 | 3380 | 0.0002 | - |
3.7625 | 3390 | 0.0002 | - |
3.7736 | 3400 | 0.0001 | - |
3.7847 | 3410 | 0.0003 | - |
3.7958 | 3420 | 0.0002 | - |
3.8069 | 3430 | 0.0003 | - |
3.8180 | 3440 | 0.0003 | - |
3.8291 | 3450 | 0.0002 | - |
3.8402 | 3460 | 0.0002 | - |
3.8513 | 3470 | 0.0002 | - |
3.8624 | 3480 | 0.0002 | - |
3.8735 | 3490 | 0.0002 | - |
3.8846 | 3500 | 0.0002 | - |
3.8957 | 3510 | 0.0002 | - |
3.9068 | 3520 | 0.0003 | - |
3.9179 | 3530 | 0.0001 | - |
3.9290 | 3540 | 0.0002 | - |
3.9401 | 3550 | 0.0002 | - |
3.9512 | 3560 | 0.0002 | - |
3.9623 | 3570 | 0.0003 | - |
3.9734 | 3580 | 0.0003 | - |
3.9845 | 3590 | 0.0002 | - |
3.9956 | 3600 | 0.0002 | - |
4.0 | 3604 | - | 0.0237 |
Framework Versions
- Python: 3.11.11
- SetFit: 1.1.0
- Sentence Transformers: 3.4.1
- Transformers: 4.44.0
- PyTorch: 2.6.0+cu124
- Datasets: 3.5.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support