MLCD-Seg / README.md
killTheHostage's picture
Update README.md
94494f0 verified
|
raw
history blame
5.06 kB
metadata
license: apache-2.0
base_model:
  - DeepGlint-AI/MLCD-Embodied-7B

PWC PWC PWC PWC PWC PWC PWC PWC PWC

RefCOCO Segmentation Evaluation:

Dataset Split MLCD-seg-7B EVF-SAM GLaMM VisionLLM v2 LISA
RefCOCO val 83.6 82.4 79.5 79.2 74.9
RefCOCO testA 85.3 84.2 83.2 82.3 79.1
RefCOCO testB 81.5 80.2 76.9 77.0 72.3
RefCOCO+ val 79.4 76.5 72.6 68.9 65.1
RefCOCO+ testA 82.9 80.0 78.7 75.8 70.8
RefCOCO+ testB 75.6 71.9 64.6 61.8 58.1
RefCOCOg val 79.7 78.2 74.2 73.3 67.9
RefCOCOg test 80.5 78.3 74.9 74.8 70.6

Evaluation

If you just want to use this code, please refer to this sample below


model_path = "DeepGlint-AI/MLCD-Seg" # or use your local path
mlcd_seg = AutoModel.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    trust_remote_code=True
).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
# Assuming you have an image named test.jpg
seg_img = Image.open("test.jpg").convert('RGB')
seg_prompt = "Could you provide a segmentation mask for the right giraffe in this image?"
pred_mask = model.seg(seg_img, seg_prompt, tokenizer, force_seg=False)

If you want to use this code measurement dataset (e.g. refcoco), then you need to use the following method

from transformers import AutoModel, AutoTokenizer
from PIL import Image


model_path = "DeepGlint-AI/MLCD-Seg" # or use your local path
mlcd_seg = AutoModel.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    trust_remote_code=True
).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
# Assuming you have an image named test.jpg
seg_img = Image.open("test.jpg").convert('RGB')
seg_prompt = "Could you provide a segmentation mask for the right giraffe in this image?"
pred_mask = model.seg(seg_img, seg_prompt, tokenizer, force_seg=True)

Citations

@misc{mlcdseg_wukun,
  author = {Wu, Kun and Xie, Yin and Zhou, Xinyu and An, Xiang, and Deng, Jiankang, and Jie, Yu},
  title = {MLCD-Seg},
  year = {2025},
  url = {https://github.com/deepglint/unicom/tree/main/downstream},
}