Update README.md
Browse files
README.md
CHANGED
@@ -5,18 +5,37 @@ tags:
|
|
5 |
- information-retrieval
|
6 |
- semantic-search
|
7 |
widget:
|
8 |
-
- source_sentence:
|
|
|
|
|
9 |
sentences:
|
10 |
-
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
pipeline_tag: sentence-similarity
|
14 |
library_name: sentence-transformers
|
|
|
|
|
15 |
---
|
16 |
|
17 |
-
# Fine-tuned Qwen3-Embedding for Italian
|
18 |
|
19 |
-
This model is a specialized fine-tuned version of [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) optimized for
|
20 |
|
21 |
## Model Description
|
22 |
|
@@ -24,16 +43,16 @@ This model is a specialized fine-tuned version of [Qwen/Qwen3-Embedding-0.6B](ht
|
|
24 |
- **Base Model**: [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B)
|
25 |
- **Output Dimensionality**: 1,024-dimensional dense vectors
|
26 |
- **Maximum Sequence Length**: 32,768 tokens
|
27 |
-
- **Primary
|
28 |
- **Similarity Function**: Cosine similarity
|
29 |
|
30 |
## Capabilities
|
31 |
|
32 |
-
###
|
33 |
-
The model demonstrates strong performance in matching Italian queries to
|
34 |
|
35 |
### Domain Coverage
|
36 |
-
Trained on diverse knowledge domains including:
|
37 |
- **Medical & Health Sciences**: Diagnostic imaging, clinical procedures, medical terminology
|
38 |
- **STEM Fields**: Physics, computer science, geology, engineering
|
39 |
- **Professional Domains**: Finance, law, agriculture, software development
|
@@ -41,18 +60,18 @@ Trained on diverse knowledge domains including:
|
|
41 |
|
42 |
### Query Understanding
|
43 |
Enhanced comprehension of:
|
44 |
-
- Conversational and informal query patterns
|
45 |
-
- Technical terminology across domains
|
46 |
-
-
|
47 |
-
- Complex multi-faceted questions
|
48 |
|
49 |
## Training Data
|
50 |
|
51 |
-
The model was fine-tuned on a curated corpus of Italian
|
52 |
|
53 |
- **Hard negative mining**: Strategic inclusion of semantically related but incorrect documents
|
54 |
-
- **
|
55 |
-
- **Domain diversity**: Comprehensive coverage of academic, professional, and conversational contexts
|
56 |
- **Quality curation**: Manual review and automated filtering for coherence and relevance
|
57 |
|
58 |
## Usage
|
@@ -63,12 +82,12 @@ from sentence_transformers import SentenceTransformer
|
|
63 |
|
64 |
model = SentenceTransformer("your-model-name")
|
65 |
|
66 |
-
#
|
67 |
query = "Come si distingue una faglia trascorrente da una normale?"
|
68 |
documents = [
|
69 |
-
"
|
70 |
-
"
|
71 |
-
"
|
72 |
]
|
73 |
|
74 |
query_embedding = model.encode(query, prompt="Represent this search query for finding relevant passages: ")
|
@@ -83,17 +102,17 @@ The model is optimized for specific prompt templates:
|
|
83 |
|
84 |
## Applications
|
85 |
|
86 |
-
- **
|
87 |
-
- **Academic and technical document search**
|
88 |
-
- **
|
89 |
-
- **Educational content recommendation**
|
90 |
-
- **Professional knowledge base systems**
|
91 |
|
92 |
## Limitations
|
93 |
|
94 |
-
- **Language coverage**:
|
95 |
- **Domain specificity**: Performance may vary on highly specialized domains not represented in training
|
96 |
-
- **Cultural context**: Reflects primarily
|
97 |
- **Computational requirements**: Dense representations require significant storage for large-scale deployment
|
98 |
|
99 |
## Model Architecture
|
@@ -110,7 +129,7 @@ SentenceTransformer(
|
|
110 |
|
111 |
```bibtex
|
112 |
@misc{qwen3-italian-retrieval-2024,
|
113 |
-
title={Fine-tuned Qwen3-Embedding for Italian
|
114 |
year={2024},
|
115 |
howpublished={\\url{https://huggingface.co/your-model-name}}
|
116 |
}
|
|
|
5 |
- information-retrieval
|
6 |
- semantic-search
|
7 |
widget:
|
8 |
+
- source_sentence: >-
|
9 |
+
Descrivi dettagliatamente il processo chimico e fisico che avviene durante
|
10 |
+
la preparazione di un impasto per crostata
|
11 |
sentences:
|
12 |
+
- >-
|
13 |
+
## La Magia Chimica e Fisica nell'Impasto della Crostata: Un Viaggio Dagli
|
14 |
+
Ingredienti Secchi al Trionfo del Forno
|
15 |
+
|
16 |
+
|
17 |
+
La preparazione di una crostata, apparentemente un gesto semplice e
|
18 |
+
familiare, cela in realtà un affascinante balletto di reazioni chimiche e
|
19 |
+
trasformazioni fisiche...
|
20 |
+
- >-
|
21 |
+
## L'Arte Effimera: Creare un Dolce Paesaggio Invernale
|
22 |
+
|
23 |
+
|
24 |
+
Immergiamoci nel cuore pulsante della pasticceria festiva, dove l'arte
|
25 |
+
culinaria si fonde con la creatività artistica...
|
26 |
+
- >-
|
27 |
+
Le piattaforme di comunicazione digitale, con la loro ubiquità crescente, si
|
28 |
+
configurano come un'arma a doppio taglio nel panorama sociale
|
29 |
+
contemporaneo...
|
30 |
pipeline_tag: sentence-similarity
|
31 |
library_name: sentence-transformers
|
32 |
+
language:
|
33 |
+
- it
|
34 |
---
|
35 |
|
36 |
+
# Fine-tuned Qwen3-Embedding for Italian Semantic Retrieval
|
37 |
|
38 |
+
This model is a specialized fine-tuned version of [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) optimized for Italian semantic retrieval tasks, with particular emphasis on Italian query understanding and document ranking.
|
39 |
|
40 |
## Model Description
|
41 |
|
|
|
43 |
- **Base Model**: [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B)
|
44 |
- **Output Dimensionality**: 1,024-dimensional dense vectors
|
45 |
- **Maximum Sequence Length**: 32,768 tokens
|
46 |
+
- **Primary Language**: Italian
|
47 |
- **Similarity Function**: Cosine similarity
|
48 |
|
49 |
## Capabilities
|
50 |
|
51 |
+
### Italian Semantic Retrieval
|
52 |
+
The model demonstrates strong performance in matching Italian queries to Italian documents, particularly effective in technical and academic domains within the Italian language context.
|
53 |
|
54 |
### Domain Coverage
|
55 |
+
Trained on diverse Italian knowledge domains including:
|
56 |
- **Medical & Health Sciences**: Diagnostic imaging, clinical procedures, medical terminology
|
57 |
- **STEM Fields**: Physics, computer science, geology, engineering
|
58 |
- **Professional Domains**: Finance, law, agriculture, software development
|
|
|
60 |
|
61 |
### Query Understanding
|
62 |
Enhanced comprehension of:
|
63 |
+
- Conversational and informal Italian query patterns
|
64 |
+
- Technical terminology in Italian across domains
|
65 |
+
- Italian semantic concepts and nuances
|
66 |
+
- Complex multi-faceted questions in Italian
|
67 |
|
68 |
## Training Data
|
69 |
|
70 |
+
The model was fine-tuned on a curated corpus of Italian semantic data, featuring high-quality triplets designed to capture semantic nuances across multiple domains. The dataset emphasizes:
|
71 |
|
72 |
- **Hard negative mining**: Strategic inclusion of semantically related but incorrect documents
|
73 |
+
- **Italian language focus**: Comprehensive representation of Italian language patterns
|
74 |
+
- **Domain diversity**: Comprehensive coverage of academic, professional, and conversational contexts in Italian
|
75 |
- **Quality curation**: Manual review and automated filtering for coherence and relevance
|
76 |
|
77 |
## Usage
|
|
|
82 |
|
83 |
model = SentenceTransformer("your-model-name")
|
84 |
|
85 |
+
# Italian query-document matching
|
86 |
query = "Come si distingue una faglia trascorrente da una normale?"
|
87 |
documents = [
|
88 |
+
"Le faglie trascorrenti sono caratterizzate da movimento orizzontale...",
|
89 |
+
"Le faglie normali si verificano a causa di stress estensionale...",
|
90 |
+
"Le strategie di gestione del portafoglio di investimenti..."
|
91 |
]
|
92 |
|
93 |
query_embedding = model.encode(query, prompt="Represent this search query for finding relevant passages: ")
|
|
|
102 |
|
103 |
## Applications
|
104 |
|
105 |
+
- **Italian information retrieval systems**
|
106 |
+
- **Academic and technical document search in Italian**
|
107 |
+
- **Italian question-answering platforms**
|
108 |
+
- **Educational content recommendation for Italian speakers**
|
109 |
+
- **Professional knowledge base systems in Italian**
|
110 |
|
111 |
## Limitations
|
112 |
|
113 |
+
- **Language coverage**: Specifically optimized for Italian language
|
114 |
- **Domain specificity**: Performance may vary on highly specialized domains not represented in training
|
115 |
+
- **Cultural context**: Reflects primarily Italian/European knowledge perspectives
|
116 |
- **Computational requirements**: Dense representations require significant storage for large-scale deployment
|
117 |
|
118 |
## Model Architecture
|
|
|
129 |
|
130 |
```bibtex
|
131 |
@misc{qwen3-italian-retrieval-2024,
|
132 |
+
title={Fine-tuned Qwen3-Embedding for Italian Semantic Retrieval},
|
133 |
year={2024},
|
134 |
howpublished={\\url{https://huggingface.co/your-model-name}}
|
135 |
}
|