|
--- |
|
base_model: unknown |
|
library_name: model2vec |
|
license: mit |
|
model_name: my_classifier_pipeline |
|
tags: |
|
- embeddings |
|
- static-embeddings |
|
- sentence-transformers |
|
--- |
|
|
|
# my_classifier_pipeline Model Card |
|
|
|
This [Model2Vec](https://github.com/MinishLab/model2vec) model is a fine-tuned version of the [unknown](https://huggingface.co/unknown) Model2Vec model. It also includes a classifier head on top. |
|
|
|
## Installation |
|
|
|
Install model2vec using pip: |
|
``` |
|
pip install model2vec[inference] |
|
``` |
|
|
|
## Usage |
|
Load this model using the `from_pretrained` method: |
|
```python |
|
from model2vec.inference import StaticModelPipeline |
|
|
|
# Load a pretrained Model2Vec model |
|
model = StaticModelPipeline.from_pretrained("my_classifier_pipeline") |
|
|
|
# Predict labels |
|
predicted = model.predict(["Example sentence"]) |
|
``` |
|
|
|
## Additional Resources |
|
|
|
- [Model2Vec Repo](https://github.com/MinishLab/model2vec) |
|
- [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e) |
|
- [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results) |
|
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials) |
|
- [Website](https://minishlab.github.io/) |
|
|
|
## Library Authors |
|
|
|
Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled). |
|
|
|
## Citation |
|
|
|
Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work. |
|
``` |
|
@article{minishlab2024model2vec, |
|
author = {Tulkens, Stephan and {van Dongen}, Thomas}, |
|
title = {Model2Vec: Fast State-of-the-Art Static Embeddings}, |
|
year = {2024}, |
|
url = {https://github.com/MinishLab/model2vec} |
|
} |
|
``` |